Qualitative Properties of Solutions to Fluids Equations

流体方程解的定性性质

基本信息

  • 批准号:
    1907992
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This project addresses the solutions of partial differential equations modeling fluids. The principal goal is understanding the evolution of an incompressible fluid. In particular, the PI will study physical problems involving fluids with a free interface. This includes the motion of water waves, with or without surface tension, and a fluid-structure interaction problem. The PI will introduce techniques which shall advance our knowledge of fluids and promote further applications in science and engineering. Graduate students will be involved in all aspects of the project.For the fluid structure interaction system, the research will seek a priori estimates leading to the local and long-time existence of solutions and the construction of solutions satisfying these properties. The PI will also study the qualitative properties of solutions, such as the persistence of analytic and Sobolev regularity, along with asymptotic behavior. Furthermore, the research seeks to answer similar questions for the solutions of the Euler equations with a free interface, focusing on the local existence and uniqueness of solutions. The PI will work on properties of solutions of other important models in connection with fluid dynamics, such as the 2D and 3D Boussinesq equations, active scalar equations, and the Prandtl equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本计画探讨流体偏微分方程式之解。主要目标是了解不可压缩流体的演化。特别是,PI将研究涉及自由界面流体的物理问题。这包括水波的运动,有或没有表面张力,以及流体-结构相互作用问题。PI将介绍技术,这将促进我们对流体的认识,并促进在科学和工程中的进一步应用。研究生将参与项目的各个方面,对于流固耦合系统,研究将寻求导致解的局部和长期存在性的先验估计,并构造满足这些性质的解。PI还将研究解决方案的定性性质,如解析和Sobolev正则性的持久性,沿着渐近行为。此外,本文还研究了具有自由界面的Euler方程解的局部存在唯一性问题。PI将研究与流体动力学相关的其他重要模型的解的性质,如二维和三维Boussinesq方程、活动标量方程和Prandtl方程。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotic properties of the Boussinesq equations with Dirichlet boundary conditions
  • DOI:
    10.3934/dcds.2023040
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    I. Kukavica;David Massatt;M. Ziane
  • 通讯作者:
    I. Kukavica;David Massatt;M. Ziane
Mach limits in analytic spaces
分析空间中的马赫极限
  • DOI:
    10.1016/j.jde.2021.07.014
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Jang, Juhi;Kukavica, Igor;Li, Linfeng
  • 通讯作者:
    Li, Linfeng
A Lagrangian Interior Regularity Result for the Incompressible Free Boundary Euler Equation with Surface Tension
具有表面张力的不可压缩自由边界欧拉方程的拉格朗日内正则结果
  • DOI:
    10.1137/18m1216808
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Disconzi, Marcelo M.;Kukavica, Igor;Tuffaha, Amjad
  • 通讯作者:
    Tuffaha, Amjad
Existence of global weak solutions to the Navier-Stokes equations in weighted spaces
加权空间中纳维-斯托克斯方程全局弱解的存在性
  • DOI:
    10.1512/iumj.2022.71.8789
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Bradshaw, Zachary;Kukavica, Igor;Tsai, Tai-Peng
  • 通讯作者:
    Tsai, Tai-Peng
Global Sobolev persistence for the fractional Boussinesq equation with zero diffusivity
零扩散率分数 Boussinesq 方程的全局 Sobolev 持久性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Igor Kukavica其他文献

On the Local Existence of Solutions to the Fluid–Structure Interaction Problem with a Free Interface
  • DOI:
    10.1007/s00245-024-10195-6
  • 发表时间:
    2024-11-06
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Igor Kukavica;Linfeng Li;Amjad Tuffaha
  • 通讯作者:
    Amjad Tuffaha
Preface: In Memory of A.V. Balakrishnan
  • DOI:
    10.1007/s00245-016-9351-7
  • 发表时间:
    2016-04-11
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Alain Bensoussan;Igor Kukavica;Irena Lasiecka;Sanjoy Mitter;Roger Temam;Roberto Triggiani
  • 通讯作者:
    Roberto Triggiani
On the Local Existence of Solutions to the compressible Navier–Stokes-Wave System with a Free Interface
  • DOI:
    10.1007/s00021-024-00861-8
  • 发表时间:
    2024-03-15
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Igor Kukavica;Linfeng Li;Amjad Tuffaha
  • 通讯作者:
    Amjad Tuffaha
Construction of the free-boundary 3D incompressible Euler flow under limited regularity
有限正则性下自由边界 3D 不可压缩欧拉流的构造
  • DOI:
    10.1016/j.jde.2024.02.027
  • 发表时间:
    2024-06-15
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Mustafa Sencer Aydin;Igor Kukavica;Wojciech S. Ożański;Amjad Tuffaha
  • 通讯作者:
    Amjad Tuffaha
Backward behavior of solutions of the Kuramoto–Sivashinsky equation
  • DOI:
    10.1016/j.jmaa.2005.01.057
  • 发表时间:
    2005-07-15
  • 期刊:
  • 影响因子:
  • 作者:
    Igor Kukavica;Mehmet Malcok
  • 通讯作者:
    Mehmet Malcok

Igor Kukavica的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Igor Kukavica', 18)}}的其他基金

Regularity and Asymptotic Behavior in Fluid Dynamics
流体动力学中的规律性和渐近行为
  • 批准号:
    2205493
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Behavior and regularity properties of solutions of fluid equations
流体方程解的行为和规律性
  • 批准号:
    1615239
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Qualitative studies of the Navier-Stokes and related systems
纳维-斯托克斯及相关系统的定性研究
  • 批准号:
    1311943
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Analytical Description of an Incompressible Flow
不可压缩流的分析描述
  • 批准号:
    1009769
  • 财政年份:
    2010
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Qualitative Behavior of Turbulent Flows
湍流的定性行为
  • 批准号:
    0604886
  • 财政年份:
    2006
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Local Properties of Turbulent Flows
湍流的局部性质
  • 批准号:
    0306586
  • 财政年份:
    2003
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Small Scales in the Navier-Stokes Equations
纳维-斯托克斯方程中的小尺度
  • 批准号:
    0072662
  • 财政年份:
    2000
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
  • 批准号:
    9896161
  • 财政年份:
    1997
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
  • 批准号:
    9623161
  • 财政年份:
    1996
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似海外基金

Analysis on Qualitative Properties and Singularities of Solutions to k-Hessian Equation and k-curvature Equation
k-Hessian方程和k-曲率方程解的定性性质和奇异性分析
  • 批准号:
    22K03386
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Qualitative Properties of Solutions of Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物方程解的定性性质
  • 批准号:
    1856491
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Qualitative Properties of Solutions to Nonlinear Elliptic Partial Differential Equations
非线性椭圆偏微分方程解的定性性质
  • 批准号:
    1800645
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Quantitative and Qualitative properties of solutions of partial differential equations
偏微分方程解的定量和定性性质
  • 批准号:
    1656845
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Qualitative properties of solutions to time evolution equations with damping terms
带阻尼项的时间演化方程解的定性性质
  • 批准号:
    15K17581
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Quantitative and Qualitative properties of solutions of partial differential equations
偏微分方程解的定量和定性性质
  • 批准号:
    1500468
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Studies on blow-up analysis of critical variational problems and qualitative properties of solutions caused by blow-up
临界变分问题的爆炸分析及爆炸引起的解的定性性质研究
  • 批准号:
    20540216
  • 财政年份:
    2008
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Qualitative Properties of Solutions of Differential Equations Modeling Biological Pattern Formation
模拟生物模式形成的微分方程解的定性性质
  • 批准号:
    18204010
  • 财政年份:
    2006
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Qualitative Properties of Solutions to Second Order Elliptic and Parabolic Differential Equations
二阶椭圆和抛物型微分方程解的定性性质
  • 批准号:
    9971052
  • 财政年份:
    1999
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Existence and qualitative properties of solutions to certain differential equations
某些微分方程解的存在性和定性性质
  • 批准号:
    184173-1996
  • 财政年份:
    1999
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了