Analytical Description of an Incompressible Flow
不可压缩流的分析描述
基本信息
- 批准号:1009769
- 负责人:
- 金额:$ 21.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project addresses the qualitative properties of solutions to the Navier-Stokes, Euler, primitive, and other important equations in fluid dynamics. The spatial and temporal behavior of solutions, such as the size of solutions, spatial and temporal complexity, quantitative unique continuation, analytic and Gevrey regularity, and long time asymptotics, will be studied. The complex systems of equations involving coupling of the Navier-Stokes equations with elasticity and other equations will also be considered with emphasis on existence, uniqueness, regularity, and long time behavior of solutions.The Navier-Stokes and Euler equations are principal models for a fluid motion. The understanding of behavior of the solutions is of fundamental importance in engineering, meteorology, medicine, and oceanography. The project will address qualitative properties of solutions with special emphasis on the properties of fine structures in the flow including vortices and oscillations. The project will also address the relationship between large and small scale motion of fluids. The research will develop tools for better understanding of a turbulent fluid flow and will aim at finding relations between theory and numerical simulations.
该项目研究流体力学中的Navier-Stokes方程、Euler方程、本原方程和其他重要方程的解的定性性质。将研究解的空间和时间行为,例如解的大小、空间和时间的复杂性、定量的唯一连续性、解析和Gevrey正则性以及长时间渐近性。此外,还将讨论由Navier-Stokes方程、弹性方程和其他方程耦合而成的复杂方程组,重点讨论解的存在性、唯一性、正则性和长时间性态。了解解的行为在工程学、气象学、医学和海洋学中具有重要意义。该项目将讨论溶液的定性性质,特别强调流动中包括漩涡和振荡在内的精细结构的性质。该项目还将解决流体的大尺度运动和小尺度运动之间的关系。这项研究将开发更好地理解湍流流动的工具,并旨在找到理论和数值模拟之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Kukavica其他文献
On the Local Existence of Solutions to the Fluid–Structure Interaction Problem with a Free Interface
- DOI:
10.1007/s00245-024-10195-6 - 发表时间:
2024-11-06 - 期刊:
- 影响因子:1.700
- 作者:
Igor Kukavica;Linfeng Li;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Preface: In Memory of A.V. Balakrishnan
- DOI:
10.1007/s00245-016-9351-7 - 发表时间:
2016-04-11 - 期刊:
- 影响因子:1.700
- 作者:
Alain Bensoussan;Igor Kukavica;Irena Lasiecka;Sanjoy Mitter;Roger Temam;Roberto Triggiani - 通讯作者:
Roberto Triggiani
On the Local Existence of Solutions to the compressible Navier–Stokes-Wave System with a Free Interface
- DOI:
10.1007/s00021-024-00861-8 - 发表时间:
2024-03-15 - 期刊:
- 影响因子:1.300
- 作者:
Igor Kukavica;Linfeng Li;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Construction of the free-boundary 3D incompressible Euler flow under limited regularity
有限正则性下自由边界 3D 不可压缩欧拉流的构造
- DOI:
10.1016/j.jde.2024.02.027 - 发表时间:
2024-06-15 - 期刊:
- 影响因子:2.300
- 作者:
Mustafa Sencer Aydin;Igor Kukavica;Wojciech S. Ożański;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Backward behavior of solutions of the Kuramoto–Sivashinsky equation
- DOI:
10.1016/j.jmaa.2005.01.057 - 发表时间:
2005-07-15 - 期刊:
- 影响因子:
- 作者:
Igor Kukavica;Mehmet Malcok - 通讯作者:
Mehmet Malcok
Igor Kukavica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Kukavica', 18)}}的其他基金
Regularity and Asymptotic Behavior in Fluid Dynamics
流体动力学中的规律性和渐近行为
- 批准号:
2205493 - 财政年份:2022
- 资助金额:
$ 21.73万 - 项目类别:
Standard Grant
Qualitative Properties of Solutions to Fluids Equations
流体方程解的定性性质
- 批准号:
1907992 - 财政年份:2019
- 资助金额:
$ 21.73万 - 项目类别:
Standard Grant
Behavior and regularity properties of solutions of fluid equations
流体方程解的行为和规律性
- 批准号:
1615239 - 财政年份:2016
- 资助金额:
$ 21.73万 - 项目类别:
Standard Grant
Qualitative studies of the Navier-Stokes and related systems
纳维-斯托克斯及相关系统的定性研究
- 批准号:
1311943 - 财政年份:2013
- 资助金额:
$ 21.73万 - 项目类别:
Continuing Grant
Qualitative Behavior of Turbulent Flows
湍流的定性行为
- 批准号:
0604886 - 财政年份:2006
- 资助金额:
$ 21.73万 - 项目类别:
Standard Grant
Small Scales in the Navier-Stokes Equations
纳维-斯托克斯方程中的小尺度
- 批准号:
0072662 - 财政年份:2000
- 资助金额:
$ 21.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
- 批准号:
9896161 - 财政年份:1997
- 资助金额:
$ 21.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
- 批准号:
9623161 - 财政年份:1996
- 资助金额:
$ 21.73万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Diversifying audio description in the Australian digital landscape
澳大利亚数字景观中的多样化音频描述
- 批准号:
DP240103045 - 财政年份:2024
- 资助金额:
$ 21.73万 - 项目类别:
Discovery Projects
Event Description in Sign Language and Gesture
手语和手势的活动描述
- 批准号:
2234889 - 财政年份:2024
- 资助金额:
$ 21.73万 - 项目类别:
Standard Grant
Improvement of paleoclimatic reconstruction since the early modern Little Ice Age by focusing on the degree of detailed description of historical daily weather record
注重历史每日天气记录的详细描述程度,改进近代小冰期以来的古气候重建
- 批准号:
23K00974 - 财政年份:2023
- 资助金额:
$ 21.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Documentation, description, and analysis of multiword tone and harmony systems in four languages
职业:四种语言的多词声调与和声系统的记录、描述和分析
- 批准号:
2236768 - 财政年份:2023
- 资助金额:
$ 21.73万 - 项目类别:
Continuing Grant
Illustrated Book Studies as a Cultural Media: Bilingual Cataloging and Description of the Arthur Tress Collection, and Promoting Its Understanding
作为文化媒体的插图书籍研究:阿瑟·特雷斯收藏的双语编目和描述,并促进其理解
- 批准号:
23KK0002 - 财政年份:2023
- 资助金额:
$ 21.73万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Microscopic description of nuclear fission based on the generator coordinate method
基于发生器坐标法的核裂变微观描述
- 批准号:
23KJ1212 - 财政年份:2023
- 资助金额:
$ 21.73万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Microvascular autoregulation in skeletal muscle using near-infrared spectroscopy: First-in-human description in ICU patients and comparison with cerebral NIRS
使用近红外光谱进行骨骼肌微血管自动调节:对 ICU 患者的首次人体描述以及与脑 NIRS 的比较
- 批准号:
495291 - 财政年份:2023
- 资助金额:
$ 21.73万 - 项目类别:
Lexical Research on Language Description and Social Acceptance of Infectious Diseases in Modern Media
现代媒体传染病语言描述与社会接受的词汇研究
- 批准号:
23KF0073 - 财政年份:2023
- 资助金额:
$ 21.73万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of Next-Generation Filtering Enabling High-Speed Processing and Flexible Policy Description
开发下一代过滤,实现高速处理和灵活的策略描述
- 批准号:
23K11104 - 财政年份:2023
- 资助金额:
$ 21.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)