Small Scales in the Navier-Stokes Equations
纳维-斯托克斯方程中的小尺度
基本信息
- 批准号:0072662
- 负责人:
- 金额:$ 9.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-15 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0072662KukavicaThis project will address definition, interplay, and rigorous estimates of various natural small scales arising in a viscous incompressible flow. In particular, we will consider those lengths that can be derived directly from solutions of the Navier-Stokes equations, which is the main model for a fluid flow. Examples of such scales are the those resulting from the Fourier spectrum of solutions, such as the inverse of the wave number at which the Fourier spectrum is cut off exponentially, and the length scales measuring complexity of level sets of solutions. Related problems will be addressed also for other dissipative partial differential equations arising in fluid dynamics, such as the Ginzburg-Landau and the Kuramoto-Sivashinsky equations.Navier-Stokes equations are perhaps the most widely studied system of nonlinear partial differential equations. They are generally believed to contain necessary ingredients to explain much of turbulence phenomena. This project will address properties of solutions which would have implications in understanding creation and properties of fine structures in a flow. Potential applications include quantifying complexity of a fluid flow, establishment of spectral properties of solutions, estimation of the size of the mesh needed to resolve a flow numerically, and information on locating observables for the flow's monitoring
[00:72662] kukavica这个项目将解决粘性不可压缩流中产生的各种自然小尺度的定义、相互作用和严格估计。特别是,我们将考虑那些可以直接从流体流动的主要模型Navier-Stokes方程的解中导出的长度。这种尺度的例子是由解的傅里叶谱产生的,例如傅里叶谱被指数切断的波数的倒数,以及测量解的水平集复杂性的长度尺度。本文还将讨论流体动力学中出现的其他耗散偏微分方程的相关问题,如金兹堡-朗道方程和Kuramoto-Sivashinsky方程。Navier-Stokes方程可能是研究最广泛的非线性偏微分方程组。它们通常被认为包含了解释许多湍流现象的必要成分。这个项目将讨论解决方案的性质,这将对理解流中精细结构的产生和性质产生影响。潜在的应用包括量化流体流动的复杂性,建立溶液的光谱特性,估计流体流动所需的网格大小,以及为流动监测定位可观测物的信息
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Kukavica其他文献
On the Local Existence of Solutions to the Fluid–Structure Interaction Problem with a Free Interface
- DOI:
10.1007/s00245-024-10195-6 - 发表时间:
2024-11-06 - 期刊:
- 影响因子:1.700
- 作者:
Igor Kukavica;Linfeng Li;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Preface: In Memory of A.V. Balakrishnan
- DOI:
10.1007/s00245-016-9351-7 - 发表时间:
2016-04-11 - 期刊:
- 影响因子:1.700
- 作者:
Alain Bensoussan;Igor Kukavica;Irena Lasiecka;Sanjoy Mitter;Roger Temam;Roberto Triggiani - 通讯作者:
Roberto Triggiani
On the Local Existence of Solutions to the compressible Navier–Stokes-Wave System with a Free Interface
- DOI:
10.1007/s00021-024-00861-8 - 发表时间:
2024-03-15 - 期刊:
- 影响因子:1.300
- 作者:
Igor Kukavica;Linfeng Li;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Construction of the free-boundary 3D incompressible Euler flow under limited regularity
有限正则性下自由边界 3D 不可压缩欧拉流的构造
- DOI:
10.1016/j.jde.2024.02.027 - 发表时间:
2024-06-15 - 期刊:
- 影响因子:2.300
- 作者:
Mustafa Sencer Aydin;Igor Kukavica;Wojciech S. Ożański;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Backward behavior of solutions of the Kuramoto–Sivashinsky equation
- DOI:
10.1016/j.jmaa.2005.01.057 - 发表时间:
2005-07-15 - 期刊:
- 影响因子:
- 作者:
Igor Kukavica;Mehmet Malcok - 通讯作者:
Mehmet Malcok
Igor Kukavica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Kukavica', 18)}}的其他基金
Regularity and Asymptotic Behavior in Fluid Dynamics
流体动力学中的规律性和渐近行为
- 批准号:
2205493 - 财政年份:2022
- 资助金额:
$ 9.35万 - 项目类别:
Standard Grant
Qualitative Properties of Solutions to Fluids Equations
流体方程解的定性性质
- 批准号:
1907992 - 财政年份:2019
- 资助金额:
$ 9.35万 - 项目类别:
Standard Grant
Behavior and regularity properties of solutions of fluid equations
流体方程解的行为和规律性
- 批准号:
1615239 - 财政年份:2016
- 资助金额:
$ 9.35万 - 项目类别:
Standard Grant
Qualitative studies of the Navier-Stokes and related systems
纳维-斯托克斯及相关系统的定性研究
- 批准号:
1311943 - 财政年份:2013
- 资助金额:
$ 9.35万 - 项目类别:
Continuing Grant
Analytical Description of an Incompressible Flow
不可压缩流的分析描述
- 批准号:
1009769 - 财政年份:2010
- 资助金额:
$ 9.35万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
- 批准号:
9896161 - 财政年份:1997
- 资助金额:
$ 9.35万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
- 批准号:
9623161 - 财政年份:1996
- 资助金额:
$ 9.35万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Bridging Sea Ice Dynamics from Floe to Basin Scales
职业:弥合从浮冰到盆地尺度的海冰动力学
- 批准号:
2338233 - 财政年份:2024
- 资助金额:
$ 9.35万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Hyporheic Zone Reaction Enhancement by Bioclogging Across Scales
合作研究:研究跨尺度生物堵塞增强潜流区反应
- 批准号:
2345366 - 财政年份:2024
- 资助金额:
$ 9.35万 - 项目类别:
Continuing Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
- 批准号:
2339001 - 财政年份:2024
- 资助金额:
$ 9.35万 - 项目类别:
Continuing Grant
Sensing the gap: Expressions of crop stress from molecular to landscape scales
感知差距:从分子到景观尺度的作物胁迫表达
- 批准号:
MR/Y034252/1 - 财政年份:2024
- 资助金额:
$ 9.35万 - 项目类别:
Fellowship
LTREB: Integrating real-time open data pipelines and forecasting to quantify ecosystem predictability at day to decadal scales
LTREB:集成实时开放数据管道和预测,以量化每日到十年尺度的生态系统可预测性
- 批准号:
2327030 - 财政年份:2024
- 资助金额:
$ 9.35万 - 项目类别:
Continuing Grant
Developing Teaching Tools to Promote Transfer of Core Concept Knowledge Across Biological Scales and Sub-disciplines.
开发教学工具以促进跨生物尺度和子学科的核心概念知识的转移。
- 批准号:
2336776 - 财政年份:2024
- 资助金额:
$ 9.35万 - 项目类别:
Standard Grant
Environmental and ecological drivers of tropical peatland methane dynamics across spatial scales
热带泥炭地甲烷空间尺度动态的环境和生态驱动因素
- 批准号:
NE/X015238/1 - 财政年份:2024
- 资助金额:
$ 9.35万 - 项目类别:
Research Grant
CAREER: Capturing the translation of wave climate to coastal change on rocky shorelines across scales
职业:在不同尺度的岩石海岸线上捕捉波浪气候对沿海变化的转化
- 批准号:
2339542 - 财政年份:2024
- 资助金额:
$ 9.35万 - 项目类别:
Continuing Grant
BII: Polyploidy: Integration Across Scales and Biological Systems
BII:多倍体:跨尺度和生物系统的整合
- 批准号:
2320251 - 财政年份:2024
- 资助金额:
$ 9.35万 - 项目类别:
Cooperative Agreement
Collaborative Research: GCR: Growing a New Science of Landscape Terraformation: The Convergence of Rock, Fluids, and Life to form Complex Ecosystems Across Scales
合作研究:GCR:发展景观改造的新科学:岩石、流体和生命的融合形成跨尺度的复杂生态系统
- 批准号:
2426095 - 财政年份:2024
- 资助金额:
$ 9.35万 - 项目类别:
Continuing Grant