Qualitative Behavior of Turbulent Flows
湍流的定性行为
基本信息
- 批准号:0604886
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-15 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kukavica0604886 This project is concerned with solutions of theNavier-Stokes equations, which are the principal model for flowof a viscous incompressible fluid. The investigator addressesquestions regarding regularity, qualitative behavior of solutions(size, complexity, decay), qualitative description of attractors,determination of solutions by observables, and minimal scale. Similar questions are addressed for the Euler equations,Kuramoto-Sivashinsky equation, and the complex Ginzburg-Landauequation. The understanding of dynamics of a fluid flow is importantin many applied fields, such as oceanography, atmosphericscience, aerodynamics, and turbulence theory. The Navier-Stokesequations are the main model for study of the viscous fluid flow. The equations have a rich history and have been a subject ofintense study due to their immense challenges and their directconnections with applications. The investigator studiesregularity questions and qualitative behavior of solutions. Potential applications include better understanding of smallstructures of turbulent flows (vortices, oscillations),reconstructing dynamics from measurements, and a rigorousinterpretation of numerical simulations of a fluid motion.
这个项目涉及的是粘性不可压缩流体流动的主要模型navier - stokes方程的解。研究者解决了关于规律性、溶液的定性行为(大小、复杂性、衰减)、吸引子的定性描述、通过可观察物和最小尺度确定溶液的问题。对于欧拉方程、Kuramoto-Sivashinsky方程和复杂的Ginzburg-Landauequation,也提出了类似的问题。对流体流动动力学的理解在许多应用领域都很重要,如海洋学、大气科学、空气动力学和湍流理论。navier - stokes方程组是研究粘性流体流动的主要模型。这些方程有着丰富的历史,由于其巨大的挑战和与应用的直接联系,一直是一个密切研究的主题。研究者研究规律性问题和解的定性行为。潜在的应用包括更好地理解湍流的小结构(漩涡,振荡),从测量中重建动力学,以及对流体运动的数值模拟的严格解释。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Kukavica其他文献
On the Local Existence of Solutions to the Fluid–Structure Interaction Problem with a Free Interface
- DOI:
10.1007/s00245-024-10195-6 - 发表时间:
2024-11-06 - 期刊:
- 影响因子:1.700
- 作者:
Igor Kukavica;Linfeng Li;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Preface: In Memory of A.V. Balakrishnan
- DOI:
10.1007/s00245-016-9351-7 - 发表时间:
2016-04-11 - 期刊:
- 影响因子:1.700
- 作者:
Alain Bensoussan;Igor Kukavica;Irena Lasiecka;Sanjoy Mitter;Roger Temam;Roberto Triggiani - 通讯作者:
Roberto Triggiani
On the Local Existence of Solutions to the compressible Navier–Stokes-Wave System with a Free Interface
- DOI:
10.1007/s00021-024-00861-8 - 发表时间:
2024-03-15 - 期刊:
- 影响因子:1.300
- 作者:
Igor Kukavica;Linfeng Li;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Construction of the free-boundary 3D incompressible Euler flow under limited regularity
有限正则性下自由边界 3D 不可压缩欧拉流的构造
- DOI:
10.1016/j.jde.2024.02.027 - 发表时间:
2024-06-15 - 期刊:
- 影响因子:2.300
- 作者:
Mustafa Sencer Aydin;Igor Kukavica;Wojciech S. Ożański;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Backward behavior of solutions of the Kuramoto–Sivashinsky equation
- DOI:
10.1016/j.jmaa.2005.01.057 - 发表时间:
2005-07-15 - 期刊:
- 影响因子:
- 作者:
Igor Kukavica;Mehmet Malcok - 通讯作者:
Mehmet Malcok
Igor Kukavica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Kukavica', 18)}}的其他基金
Regularity and Asymptotic Behavior in Fluid Dynamics
流体动力学中的规律性和渐近行为
- 批准号:
2205493 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Qualitative Properties of Solutions to Fluids Equations
流体方程解的定性性质
- 批准号:
1907992 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Behavior and regularity properties of solutions of fluid equations
流体方程解的行为和规律性
- 批准号:
1615239 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Qualitative studies of the Navier-Stokes and related systems
纳维-斯托克斯及相关系统的定性研究
- 批准号:
1311943 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Analytical Description of an Incompressible Flow
不可压缩流的分析描述
- 批准号:
1009769 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Small Scales in the Navier-Stokes Equations
纳维-斯托克斯方程中的小尺度
- 批准号:
0072662 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
- 批准号:
9896161 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
- 批准号:
9623161 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Comprehensive Study on Large-scale Fire Spreading Behavior using Turbulent Wind Tunnel
利用湍流风洞综合研究大面积火灾蔓延行为
- 批准号:
23KF0040 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Numerical study of internal waves, turbulent mixing, and behavior of particulate matter around artificial mound reef
人工丘礁周围内波、湍流混合和颗粒物行为的数值研究
- 批准号:
17K18431 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Effect of Flame Surface Shape and Unsteady Behavior on Flame Structure of Turbulent Premixed Flames
火焰表面形状和非定常行为对湍流预混火焰火焰结构的影响
- 批准号:
18560196 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hydrodynamics, solids mixing and transport behavior of turbulent fluidized beds, high-density risers and dilute spouted beds
湍流流化床、高密度提升管和稀喷动床的流体动力学、固体混合和传输行为
- 批准号:
203143-2002 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Hydrodynamics, solids mixing and transport behavior of turbulent fluidized beds, high-density risers and dilute spouted beds
湍流流化床、高密度提升管和稀喷动床的流体动力学、固体混合和传输行为
- 批准号:
203143-2002 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Structure and Dynamic Behavior of Flamelet with Strain as Turbulent Combustion Elementary Process
湍流燃烧基本过程应变小火焰的结构与动态行为
- 批准号:
15360111 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Hydrodynamics, solids mixing and transport behavior of turbulent fluidized beds, high-density risers and dilute spouted beds
湍流流化床、高密度提升管和稀喷动床的流体动力学、固体混合和传输行为
- 批准号:
203143-2002 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Hydrodynamics, solids mixing and transport behavior of turbulent fluidized beds, high-density risers and dilute spouted beds
湍流流化床、高密度提升管和稀喷动床的流体动力学、固体混合和传输行为
- 批准号:
203143-2002 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Investigation of Transient Flamelets Behavior in Turbulent Diffusion Flames
湍流扩散火焰中瞬态小火焰行为的研究
- 批准号:
09450093 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fractal Behavior of Turbulent Premixed Flames Propagating in Combustion Chambers and Turbulence Characteristics of Precombustion Mixture
燃烧室内湍流预混火焰的分形行为及预燃混合气的湍流特性
- 批准号:
06452186 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Grant-in-Aid for General Scientific Research (B)