ITR: Extraction and Interpretation of Information from Large-Scale Hyperspectral Data for Mapping and Monitoring Wetland Ecosystems

ITR:从大规模高光谱数据中提取和解释信息,用于绘制和监测湿地生态系统

基本信息

  • 批准号:
    0312471
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-01 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

This award will provide for the development of a comprehensive system that can efficiently and intelligently extract, analyze and manage very large hyperspectral datasets used for classifying a large variety of land covers in environmentally sensitive ecosystems. Hyperspectral data provide unprecendented spectral resolution which can translate to far superior characterization of remotely sensed areas, but pose significant challenges because of the large data volumes, high dimensionality, little labelled data and large number of potential land cover types or classes. These challenges are being addressed by new adaptive feature space reduction methods that exploit spectral correlations, by semi-supervised and active learning methods for dealing with small training sets, and by knowledge reuse and transfer mechanisms that adapt models developed for one area to new regions with related characteristics. In parallel, a knowledge repository that helps rapidly identify the most pertinent features/classes for a given area, will be built to substantially reduce data storage requirements and processing time.This inter-disciplinary project requires tight interaction between data acquisition and processing/analysis, and will provide insights for other engineering problems as well. The visual nature of results from analysis of remotely sensed data make it a powerful modality of introducing the general population to issues of broad concern, such as the impact of global warming and disaster management. Finally, the knowledge transfer mechanisms will be useful for rapidly adapting existing solutions to somewhat different but related problems, thus substantially increasing the utility of existing point solutions in several application domains.
该奖项将用于开发一种全面的系统,该系统可以高效和智能地提取、分析和管理用于对环境敏感生态系统中的各种土地覆盖进行分类的超光谱数据集。高光谱数据提供了前所未有的光谱分辨率,这可以转化为对遥感区域的更好的表征,但由于数据量大、维度高、标签数据少以及大量潜在的土地覆盖类型或类别,高光谱数据构成了重大挑战。这些挑战正在通过利用光谱相关性的新的自适应特征空间约简方法、通过处理小训练集的半监督和主动学习方法以及通过使为一个领域开发的模型适应具有相关特征的新区域的知识重用和转移机制来解决。同时,将建立一个知识库,帮助快速确定特定地区最相关的特征/类别,以大大减少数据存储要求和处理时间。这一跨学科项目需要数据采集和处理/分析之间的密切互动,并将为其他工程问题提供见解。遥感数据分析结果的视觉特性使其成为向普通民众介绍诸如全球变暖和灾害管理等广泛关注的问题的一种强有力的方式。最后,知识转移机制将有助于快速调整现有解决方案,使其适应一些不同但相关的问题,从而大大增加现有点状解决方案在几个应用领域的效用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joydeep Ghosh其他文献

Efficient Machine Learning-assisted Failure Analysis Method for Circuit-level Defect Prediction
用于电路级缺陷预测的高效机器学习辅助故障分析方法
A generative framework for predictive modeling using variably aggregated, multi-source healthcare data
使用不同聚合的多源医疗保健数据进行预测建模的生成框架
  • DOI:
    10.1145/2023582.2023587
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yubin Park;Joydeep Ghosh
  • 通讯作者:
    Joydeep Ghosh
DYNACARE: Dynamic Cardiac Arrest Risk Estimation
DYNACARE:动态心脏骤停风险评估
DYNACARE-OP : Dynamic Cardiac Arrest Risk Estimation Incorporating Ordinal Features
DYNACARE-OP:结合序数特征的动态心脏骤停风险估计
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joyce Ho;Yubin Park;C. Carvalho;Joydeep Ghosh
  • 通讯作者:
    Joydeep Ghosh
Robust Order Statistics Based Ensembles for Distributed Data Mining
用于分布式数据挖掘的基于稳健阶统计的集成
  • DOI:
    10.21236/ada396346
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kagan Tumer;Joydeep Ghosh
  • 通讯作者:
    Joydeep Ghosh

Joydeep Ghosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joydeep Ghosh', 18)}}的其他基金

SCH: INT: Collaborative Research: High-throughput Phenotyping on Electronic Health Records using Multi-Tensor Factorization
SCH:INT:协作研究:使用多张量分解对电子健康记录进行高通量表型分析
  • 批准号:
    1417697
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
III: Small: Core: Monotonic Retargeting: A Scalable Learning Framework for Determining Order
III:小:核心:单调重定向:用于确定顺序的可扩展学习框架
  • 批准号:
    1421729
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
III: Small: Simultaneous Decomposition and Predictive Modeling on Large Multi-Modal Data
III:小型:大型多模态数据的同时分解和预测建模
  • 批准号:
    1017614
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
III-CXT: Collaborative Research: Advanced learning and integrative knowledge transfer approaches to remote sensing and forecast modeling for understanding land use change
III-CXT:协作研究:遥感和预测建模的高级学习和综合知识转移方法,以了解土地利用变化
  • 批准号:
    0705815
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
III-COR: Versatile Co-clustering Analysis for Bi-modal and Multi-modal Data
III-COR:双模态和多模态数据的多功能共聚类分析
  • 批准号:
    0713142
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Scalable Clustering of Complex Data
复杂数据的可扩展集群
  • 批准号:
    0307792
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Knowledge Transfer and Reuse in Multiclassifier Systems
多分类器系统中的知识转移和重用
  • 批准号:
    9900353
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RIA: An Integrated Approach to High-Performance Network Technology
RIA:高性能网络技术的集成方法
  • 批准号:
    9011787
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unlocking mine waste potential: carbon sequestration and metals extraction
释放矿山废物潜力:碳封存和金属提取
  • 批准号:
    LP230100371
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
Extraction and Use of Highly Explainable and Transferable Indicators for AI in Education
高度可解释和可转移的人工智能教育指标的提取和使用
  • 批准号:
    23K25698
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
PROTSENS Rethinking Alternative PROTein Extraction: Decoding SENsory-Protein Extraction Relationships
PROTSENS 重新思考替代性蛋白质提取:解码感觉-蛋白质提取关系
  • 批准号:
    EP/Z000785/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Objective Measurement and Analysis of Fibre Extraction
纤维提取的客观测量和分析
  • 批准号:
    10089054
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
  • 批准号:
    2327168
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of a miniaturized biotechnology platform for nucleic acid extraction, purification, and library preparation
I-Corps:用于核酸提取、纯化和文库制备的小型生物技术平台的转化潜力
  • 批准号:
    2421022
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
BuildZero: transforming the UK's buildings for zero material extraction, zero carbon and zero waste
BuildZero:改造英国建筑,实现零材料开采、零碳和零废物
  • 批准号:
    EP/Y530578/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles
职业:从第一原理了解熔盐中的电化学金属萃取
  • 批准号:
    2340765
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了