III-CXT: Collaborative Research: Advanced learning and integrative knowledge transfer approaches to remote sensing and forecast modeling for understanding land use change
III-CXT:协作研究:遥感和预测建模的高级学习和综合知识转移方法,以了解土地利用变化
基本信息
- 批准号:0705815
- 负责人:
- 金额:$ 29.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merits. The characterization of land cover and usage over large geographical regions, as well as the near/long-term forecasting of changes in land use, is a key problem in geo-informatics that is particularly important for regions that are subject to rapid ecological changes or urbanization. At present, the data and knowledge required for detailed and accurate characterization is scattered across both traditional (GIS) spatial data sources and across remotely sensed data, and their associated models, none of which inter-operate well. This research will develop a comprehensive framework for efficient and accurate mapping, monitoring and modeling of land cover and changes in usage over large regions. This endeavor involves three complementary activities: (i) large scale classification of remote sensing imagery using advanced learning methods, including transfer learning, active learning and manifold based data descriptors; (ii) next-generation spatial modeling using ensembles for forecasting land transformations; and (iii) integration of GIS and remote sensing data by distributed, privacy aware learning, integrating taxonomies obtained from different data sources and portal building. A plan of interaction with various stakeholders is proposed to ensure that the results are meaningful and actionable. This project will result in substantial advances in analysis of remotely sensed data over extended regions and lead to a substantial reduction in the uncertainty of long-term forecasts of change. Concurrently, the chosen application domain will also provide a concrete setting that motivates several new data mining problems, leading to new algorithmic formulations and solutions that benefit the broader data mining community. Broader Impacts. This project is designed to have many, diverse broader impacts. First is the involvement of application scientists in the remote sensing and modeling communities who will benefit from advanced methods in machine learning. The research results will be brought into the classroom through new graduate courses. Popular science lectures for middle and high school are also planned since the subject matter and results can be conveyed meaningfully to this audience in a visual way that emphasizes issues of broader concern, such as the impact of ecological changes and urban sprawl. Two project-wide workshops are proposed that will also involve stakeholders (e.g., planners) who would directly benefit from the results and provide valuable feedback. A portal will be created in year 3 to provide access to data, code and toolkits produced by the project. Results will be disseminated in each of the three main disciplines represented within the project through scholarly publications. Finally, tools will be developed so that they may eventually be incorporated into Commercial Off The Shelf software, such as GIS and remote sensing software.
智力优势。确定大面积地理区域土地覆盖和使用的特点以及对土地使用变化的近期/长期预测是地理信息学的一个关键问题,对于生态变化或城市化迅速的区域尤为重要。目前,详细和准确的定性所需的数据和知识分散在传统的(地理信息系统)空间数据源和遥感数据及其相关模型中,没有一个相互作用良好。这项研究将制定一个全面的框架,以便对大区域的土地覆盖和使用变化进行有效和准确的绘图、监测和建模。这一奋进涉及三项相辅相成的活动:㈠利用先进学习方法,包括迁移学习、主动学习和基于流形的数据描述符,对遥感图像进行大规模分类; ㈡利用集合预测土地变化的下一代空间建模;以及(iii)通过分布式、隐私意识学习,整合从不同数据源获得的分类和门户建设。提出了与各利益攸关方互动的计划,以确保成果有意义和可操作。这一项目将大大促进对广大区域遥感数据的分析,并大大减少长期变化预测的不确定性。同时,所选择的应用领域还将提供一个具体的环境,激发几个新的数据挖掘问题,导致新的算法公式和解决方案,有利于更广泛的数据挖掘社区。更广泛的影响。这个项目旨在产生许多不同的更广泛的影响。首先是遥感和建模社区的应用科学家的参与,他们将受益于机器学习的先进方法。研究成果将通过新的研究生课程带入课堂。还计划为初中和高中开设科普讲座,因为可以以视觉方式向这些听众传达有意义的主题和结果,强调更广泛关注的问题,如生态变化和城市扩张的影响。建议举办两个项目范围的讲习班,也将有利益攸关方(例如,规划人员),他们将直接从结果中受益,并提供有价值的反馈。将在第三年创建一个门户网站,以提供对项目产生的数据、代码和工具包的访问。将通过学术出版物传播项目所代表的三个主要学科的成果。最后,将开发各种工具,以便最终将其纳入现有的商业软件,如地理信息系统和遥感软件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joydeep Ghosh其他文献
Efficient Machine Learning-assisted Failure Analysis Method for Circuit-level Defect Prediction
用于电路级缺陷预测的高效机器学习辅助故障分析方法
- DOI:
10.1016/j.mlwa.2024.100537 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Joydeep Ghosh - 通讯作者:
Joydeep Ghosh
A generative framework for predictive modeling using variably aggregated, multi-source healthcare data
使用不同聚合的多源医疗保健数据进行预测建模的生成框架
- DOI:
10.1145/2023582.2023587 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yubin Park;Joydeep Ghosh - 通讯作者:
Joydeep Ghosh
DYNACARE: Dynamic Cardiac Arrest Risk Estimation
DYNACARE:动态心脏骤停风险评估
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Joyce Ho;Yubin Park;C. Carvalho;Joydeep Ghosh - 通讯作者:
Joydeep Ghosh
DYNACARE-OP : Dynamic Cardiac Arrest Risk Estimation Incorporating Ordinal Features
DYNACARE-OP:结合序数特征的动态心脏骤停风险估计
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Joyce Ho;Yubin Park;C. Carvalho;Joydeep Ghosh - 通讯作者:
Joydeep Ghosh
Robust Order Statistics Based Ensembles for Distributed Data Mining
用于分布式数据挖掘的基于稳健阶统计的集成
- DOI:
10.21236/ada396346 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Kagan Tumer;Joydeep Ghosh - 通讯作者:
Joydeep Ghosh
Joydeep Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joydeep Ghosh', 18)}}的其他基金
SCH: INT: Collaborative Research: High-throughput Phenotyping on Electronic Health Records using Multi-Tensor Factorization
SCH:INT:协作研究:使用多张量分解对电子健康记录进行高通量表型分析
- 批准号:
1417697 - 财政年份:2014
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
III: Small: Core: Monotonic Retargeting: A Scalable Learning Framework for Determining Order
III:小:核心:单调重定向:用于确定顺序的可扩展学习框架
- 批准号:
1421729 - 财政年份:2014
- 资助金额:
$ 29.05万 - 项目类别:
Continuing Grant
III: Small: Simultaneous Decomposition and Predictive Modeling on Large Multi-Modal Data
III:小型:大型多模态数据的同时分解和预测建模
- 批准号:
1017614 - 财政年份:2010
- 资助金额:
$ 29.05万 - 项目类别:
Continuing Grant
III-COR: Versatile Co-clustering Analysis for Bi-modal and Multi-modal Data
III-COR:双模态和多模态数据的多功能共聚类分析
- 批准号:
0713142 - 财政年份:2007
- 资助金额:
$ 29.05万 - 项目类别:
Continuing Grant
Scalable Clustering of Complex Data
复杂数据的可扩展集群
- 批准号:
0307792 - 财政年份:2003
- 资助金额:
$ 29.05万 - 项目类别:
Continuing Grant
ITR: Extraction and Interpretation of Information from Large-Scale Hyperspectral Data for Mapping and Monitoring Wetland Ecosystems
ITR:从大规模高光谱数据中提取和解释信息,用于绘制和监测湿地生态系统
- 批准号:
0312471 - 财政年份:2003
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Knowledge Transfer and Reuse in Multiclassifier Systems
多分类器系统中的知识转移和重用
- 批准号:
9900353 - 财政年份:1999
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
RIA: An Integrated Approach to High-Performance Network Technology
RIA:高性能网络技术的集成方法
- 批准号:
9011787 - 财政年份:1990
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
相似国自然基金
吩嗪类化合物CXT-A3对乳腺癌干细胞的抑制作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
- 批准号:
1103684 - 财政年份:2010
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
III-CXT-Medium: Collaborative Research: Inference of Complex Genealogical Histories in Populations: Algorithms and Applications
III-CXT-Medium:协作研究:群体中复杂谱系历史的推断:算法和应用
- 批准号:
0803440 - 财政年份:2008
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: REGNET - Information Management and Compliance Assistance for Patent Laws and Regulations
III-CXT-Small:合作研究:REGNET - 专利法律法规的信息管理和合规协助
- 批准号:
0811460 - 财政年份:2008
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
- 批准号:
0812271 - 财政年份:2008
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
- 批准号:
0812372 - 财政年份:2008
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
III-CXT-Small:协作研究:在超大型医学图像数据库中构建、推理和查询
- 批准号:
0812073 - 财政年份:2008
- 资助金额:
$ 29.05万 - 项目类别:
Continuing Grant
III-CXT-Large: Collaborative Research: Interactive and Intelligent searching of biological images by query and network navigation with learning capabilities.
III-CXT-Large:协作研究:通过具有学习功能的查询和网络导航对生物图像进行交互式和智能搜索。
- 批准号:
0808661 - 财政年份:2008
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
III-CXT-Small:协作研究:在超大型医学图像数据库中构建、推理和查询
- 批准号:
0854606 - 财政年份:2008
- 资助金额:
$ 29.05万 - 项目类别:
Continuing Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying
III-CXT-Small:协作研究:结构化、推理和查询
- 批准号:
0812124 - 财政年份:2008
- 资助金额:
$ 29.05万 - 项目类别:
Continuing Grant
`III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
`III-CXT-Small:协作研究:在非常大的医学图像数据库中构建、推理和查询
- 批准号:
0812120 - 财政年份:2008
- 资助金额:
$ 29.05万 - 项目类别:
Continuing Grant














{{item.name}}会员




