Workshop on Infinite Dimensional Lie Theory and Its Applications; July 17-25, 2003; Toronto, Canada
无限维李理论及其应用研讨会;
基本信息
- 批准号:0320780
- 负责人:
- 金额:$ 1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2004-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Principal Investigator: Chongying DongProposal Number: DMS- 0320780Institution: University of California Santa Cruz AbstractThe Fields Institute is running a workshop on Infinite Dimensional Lie Theory and Its Applications, July 17-25, 2003. The workshop has been approved by the Scientific Advisory Panel for funding of $25000 Canadian by the Fields Institute. The funding from the NSF will support young American mathematicians who wish to participate. The workshop is a follow up of one-term program on ``Infinite Dimensional Lie Theory and Its Applications'' taken place at the Field Institute in the fall of 2000. The goal of the proposed conference is to present some of the most important advances in Lie theory since the 2000 program. This will allow the vibrant North-American Lie community to build on the momentum gained through the last program. There will be an instructional component during the first three days (Thursday, July 17 through Saturday, July 19) featuring three series of lectures. These will be given by prominent people covering topics of current interest. The conference is scheduled from Monday, July 21 to Friday, July 25. It will feature invited lectures by seniors lectures. In addition, all of the junior participants in the Fields 2000 Lie Theory program will be invited to give 30 minutes presentations.Infinite dimensional Lie algebras appear as symmetries of a wide class of systems and objects. The theory of infinite dimensional Lie algebras such as Kac-Moody Lie algebras and vertex algebras have developed rapidly during the last two decades. This development has various applications to many branches in mathematics and physics such as integrable system, topology, geometry, number theory, conformal field theory and string theory. An integral and important part of the proposed conference is to provide opportunities for young mathematicians to collaborate with leading experts in Lie theory,to learn the most important development in the field, and to show off their accomplishments in front of the international leaders in the area.
主要研究者:董重英提案编号:DMS-0320780机构:加州大学圣克鲁斯摘要菲尔兹研究所将于2003年7月17-25日举办一个关于无限维李理论及其应用的研讨会。该研讨会已获得科学咨询小组的批准,由菲尔兹研究所资助25000加元。来自NSF的资金将支持希望参与的年轻美国数学家。该研讨会是2000年秋季在菲尔德研究所举行的“无限维李理论及其应用”的一个学期计划的后续活动。拟议会议的目标是提出自2000年计划以来李群理论的一些最重要的进展。这将使充满活力的北美谎言社区建立在通过最后一个程序获得的势头。在前三天(7月17日星期四至7月19日星期六)将有一个教学部分,包括三个系列讲座。这些将由知名人士提供,涵盖当前感兴趣的话题。会议定于7月21日星期一至7月25日星期五举行。它将以邀请老年人讲座为特色。此外,所有的初级参与者在领域2000年李理论计划将被邀请给30分钟的报告。无限维李代数出现的对称性的广泛的一类系统和对象。无限维李代数的理论如Kac-Moody李代数和顶点代数在过去的二十年里得到了迅速的发展。这一发展在可积系统、拓扑学、几何学、数论、共形场论和弦论等数学和物理学的许多分支中有着广泛的应用。拟议会议的一个不可或缺的重要组成部分是为年轻数学家提供与李群理论领先专家合作的机会,了解该领域最重要的发展,并在该领域的国际领导人面前展示他们的成就。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chongying Dong其他文献
emS/em-matrix in permutation orbifolds
置换轨形中的 emS/em 矩阵
- DOI:
10.1016/j.jalgebra.2022.05.025 - 发表时间:
2022-09-15 - 期刊:
- 影响因子:0.800
- 作者:
Chongying Dong;Feng Xu;Nina Yu - 通讯作者:
Nina Yu
顶点算子代数$V_{L}^{+}$的有理性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Cuipo Jiang;Xingjun Lin;Chongying Dong - 通讯作者:
Chongying Dong
RETRACTED ARTICLE: Modular framed vertex operator algebras
- DOI:
10.1007/s40879-018-0257-6 - 发表时间:
2018-05-31 - 期刊:
- 影响因子:0.500
- 作者:
Chongying Dong;Ching Hung Lam;Li Ren - 通讯作者:
Li Ren
A characterization of vertex operator algebra V_Z^+: I
顶点算子代数 V_Z^ 的表征:I
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Chongying Dong;Cuipo Jiang - 通讯作者:
Cuipo Jiang
THE IRREDUCIBLE MODULES AND FUSION RULES FOR THE PARAFERMION VERTEX OPERATOR ALGEBRAS
- DOI:
https://doi.org/10.1090/tran/7302 - 发表时间:
- 期刊:
- 影响因子:
- 作者:
Chunrui Ai;Chongying Dong;Xiangyu Jiao;Li Ren - 通讯作者:
Li Ren
Chongying Dong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chongying Dong', 18)}}的其他基金
Proposal on International Conferences on Vertex Algebra and Related Topics
关于顶点代数及相关主题国际会议的提案
- 批准号:
1042747 - 财政年份:2010
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
International Conference on Algebra and Related Areas
代数及相关领域国际会议
- 批准号:
0701554 - 财政年份:2007
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Vertex Operator Algebras, Elliptic Genus and Conformal Nets
顶点算子代数、椭圆亏格和共形网络
- 批准号:
0555197 - 财政年份:2006
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Vertex Operator Algebras and Their Automorphisms
顶点算子代数及其自同构
- 批准号:
9987656 - 财政年份:2000
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Vertex Operator Algebras and Monstrous Moonshine
顶点算子代数和巨大的 Moonshine
- 批准号:
9700923 - 财政年份:1997
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Mathematical Sciences: Representation Theory of Vertex Operator Algebra
数学科学:顶点算子代数的表示论
- 批准号:
9303374 - 财政年份:1993
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
相似海外基金
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
- 批准号:
23K12970 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Asymptotic theory and infinite-dimensional stochastic calculus
渐近理论和无限维随机微积分
- 批准号:
23H03354 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Applications of Infinite Dimensional Compressive Sensing to Multi-Dimensional Analog Images using Machine Learning to Enhance Results
利用机器学习将无限维压缩感知应用于多维模拟图像以增强结果
- 批准号:
2889834 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Studentship
Ergodic properties of infinite dimensional dynamical systems
无限维动力系统的遍历性质
- 批准号:
2888861 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Studentship
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
- 批准号:
RGPIN-2015-05968 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Discovery Grants Program - Individual
Studies on rigorous integrator for infinite dimensional dynamical systems
无限维动力系统严格积分器研究
- 批准号:
22K03411 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-asymptotic inference for high and infinite dimensional data
高维和无限维数据的非渐近推理
- 批准号:
RGPIN-2018-05678 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Discovery Grants Program - Individual
Application of Galois cohomology to infinite dimensional Lie theory
伽罗瓦上同调在无限维李理论中的应用
- 批准号:
RGPIN-2016-04651 - 财政年份:2021
- 资助金额:
$ 1万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




