Vertex Operator Algebras and Their Automorphisms
顶点算子代数及其自同构
基本信息
- 批准号:9987656
- 负责人:
- 金额:$ 7.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator will investigate vertex operator algebrasand their automorphism groups. Holomorphic orbifold theory, andrational vertex operator algebras will be studied. Relation amongvertex operator algebras, automorphism groups of vertex operatoralgebras, quantum doubles, dual pairs will be discussed. Theautomorphism group of a rational vertex operator algebra will bedetermined. Certain rational vertex operator algebras will becharacterized and classified. Several fundamental problems in the theory of vertex operator algebra are expected to be solved. The goal ofthis project is to lay some further foundations of the theory of vertexoperator algebras and their representations. String theory at present is the only candidate for a theory combining all the fundamental interactions. Two dimensional conformal field theorywhich is an important physical theory describing two-dimensionalcritical phenomena in condensed matter physics provides a framework for string theory. Vertex operator algebras are symmetry algebras in conformal field theory. Physical theories, perhaps more often than mathematical theories,typically start from particular structure, called the models. On theother hand, mathematical theories abstract from the examples and predictwhat happens in general. This is a research thatstarts out in the field of algebra but moves beyond that to touchinvariant theory, quantum groups, modular forms, and conformal and topological field theories. A successful study of this project will lead to new mathematical discoveries which will be important both in mathematics and physics.
主要研究者将研究顶点算子代数及其自同构群。研究全纯轨道理论、有理顶点算子代数.讨论了顶点算子代数、顶点算子代数的自同构群、量子偶、对偶对等关系. 确定了一个有理顶点算子代数的自同构群。对某些有理顶点算子代数进行了刻划和分类。顶点算子代数理论中的几个基本问题有望得到解决。本项目的目标是为顶点算子代数及其表示理论奠定进一步的基础。弦理论是目前唯一一个结合了所有基本相互作用的候选理论。二维共形场论是描述凝聚态物理中二维临界现象的重要物理理论,它为弦理论提供了一个框架.顶点算子代数是共形场论中的对称代数。物理理论,也许比数学理论更经常,通常从特定的结构开始,称为模型。另一方面,数学理论从例子中抽象出来,预测一般发生的事情。 这是一个研究,开始在代数领域,但超越了接触变论,量子群,模形式,共形和拓扑场论。这个项目的成功研究将导致新的数学发现,这将是重要的数学和物理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chongying Dong其他文献
emS/em-matrix in permutation orbifolds
置换轨形中的 emS/em 矩阵
- DOI:
10.1016/j.jalgebra.2022.05.025 - 发表时间:
2022-09-15 - 期刊:
- 影响因子:0.800
- 作者:
Chongying Dong;Feng Xu;Nina Yu - 通讯作者:
Nina Yu
顶点算子代数$V_{L}^{+}$的有理性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Cuipo Jiang;Xingjun Lin;Chongying Dong - 通讯作者:
Chongying Dong
RETRACTED ARTICLE: Modular framed vertex operator algebras
- DOI:
10.1007/s40879-018-0257-6 - 发表时间:
2018-05-31 - 期刊:
- 影响因子:0.500
- 作者:
Chongying Dong;Ching Hung Lam;Li Ren - 通讯作者:
Li Ren
A characterization of vertex operator algebra V_Z^+: I
顶点算子代数 V_Z^ 的表征:I
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Chongying Dong;Cuipo Jiang - 通讯作者:
Cuipo Jiang
THE IRREDUCIBLE MODULES AND FUSION RULES FOR THE PARAFERMION VERTEX OPERATOR ALGEBRAS
- DOI:
https://doi.org/10.1090/tran/7302 - 发表时间:
- 期刊:
- 影响因子:
- 作者:
Chunrui Ai;Chongying Dong;Xiangyu Jiao;Li Ren - 通讯作者:
Li Ren
Chongying Dong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chongying Dong', 18)}}的其他基金
Proposal on International Conferences on Vertex Algebra and Related Topics
关于顶点代数及相关主题国际会议的提案
- 批准号:
1042747 - 财政年份:2010
- 资助金额:
$ 7.02万 - 项目类别:
Continuing Grant
International Conference on Algebra and Related Areas
代数及相关领域国际会议
- 批准号:
0701554 - 财政年份:2007
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Vertex Operator Algebras, Elliptic Genus and Conformal Nets
顶点算子代数、椭圆亏格和共形网络
- 批准号:
0555197 - 财政年份:2006
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Workshop on Infinite Dimensional Lie Theory and Its Applications; July 17-25, 2003; Toronto, Canada
无限维李理论及其应用研讨会;
- 批准号:
0320780 - 财政年份:2003
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Vertex Operator Algebras and Monstrous Moonshine
顶点算子代数和巨大的 Moonshine
- 批准号:
9700923 - 财政年份:1997
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Mathematical Sciences: Representation Theory of Vertex Operator Algebra
数学科学:顶点算子代数的表示论
- 批准号:
9303374 - 财政年份:1993
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
相似海外基金
Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
- 批准号:
2200862 - 财政年份:2022
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Modular linear differential equations and vertex operator algebras
模线性微分方程和顶点算子代数
- 批准号:
22K03249 - 财政年份:2022
- 资助金额:
$ 7.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Higher Quantum Airy Structures from Vertex Operator Algebras
顶点算子代数的更高量子艾里结构
- 批准号:
569537-2022 - 财政年份:2022
- 资助金额:
$ 7.02万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Research on vertex operator algebras by using Conway groups
利用康威群研究顶点算子代数
- 批准号:
21K03195 - 财政年份:2021
- 资助金额:
$ 7.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on uniform construction and automorphism groups of holomorphic vertex operator algebras of central charge 24
中心电荷全纯顶点算子代数的一致构造和自同构群研究 24
- 批准号:
20K03505 - 财政年份:2020
- 资助金额:
$ 7.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetric functions and vertex operator algebras
对称函数和顶点算子代数
- 批准号:
2279467 - 财政年份:2019
- 资助金额:
$ 7.02万 - 项目类别:
Studentship
Vertex Operator Algebras, Number Theory, and Related Topics
顶点算子代数、数论及相关主题
- 批准号:
1802478 - 财政年份:2018
- 资助金额:
$ 7.02万 - 项目类别:
Standard Grant
Research on uniqueness of holomorphic vertex operator algebras of central charge 24 by using reverse orbifold construction
利用逆轨道折叠结构研究中心电荷24全纯顶点算子代数的唯一性
- 批准号:
17K05154 - 财政年份:2017
- 资助金额:
$ 7.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vertex operator algebras and modular differential equations
顶点算子代数和模微分方程
- 批准号:
17K05171 - 财政年份:2017
- 资助金额:
$ 7.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAPSI: Modular Vertex Operator Algebras Associated with the Virasoro Algebra
EAPSI:与 Virasoro 代数相关的模顶点算子代数
- 批准号:
1713945 - 财政年份:2017
- 资助金额:
$ 7.02万 - 项目类别:
Fellowship Award