Vertex Operator Algebras, Elliptic Genus and Conformal Nets

顶点算子代数、椭圆亏格和共形网络

基本信息

  • 批准号:
    0555197
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-15 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

The PI plans to study the structure and representation theory forvertex operator algebras, the connection between vertex operatoralgebras and geometry, and the connection between algebraic andanalytic approaches to 2 dimensional conformal field theory. Inparticular, the following topics will be studied: (1) TheFrenkel-Lepowsky-Meurman's uniqueness conjecture of the moonshinevertex operator algebra. The goal is to prove the conjecture completelyand to obtain a characterization of the Griess algebra (independent ofthe monster simple group). This is a part of program of classificationof holomorphic vertex operator algebras of central charge 24. (2) Thechiral ring (which was defined by physicists in the study of superconformal field theory and super string theory) of a N=2 unitary vertexoperator superalgebra and elliptic genus of a Calabi-Yau manifold. Thepurpose is to understand the role that the chiral ring plays in thestructure and representation theory of vertex operator superalgebra,and to investigate to what extend the chiral ring of the vertexoperator superalgebra associated to a Calabi-Yau manifold determinesthe elliptic genus of the manifold. (3) The connection between vertexoperator algebra (an algebraic approach to conformal field theory) andconformal nets (an analytic approach to conformal field theory). Thisis a long term program. The goal is to construct vertex operatoralgebras and conformal nets from each other. This will lead to aunification of the algebraic and analytic approaches to 2 dimensionalconformal field theory.The theory of vertex operator algebra provides an algebraic foundationfor the 2 dimensional quantum conformal field theory in physics and isalso deeply related to many important areas of mathematics such asrepresentation theory, group theory, modular forms, topologyinvariants, and C*-algebras. The planned research links vertex algebraoperator algebras with topology, C*-algebras and quantum field theory,and has important applications in both mathematics and physics.
PI计划研究顶点算子代数的结构和表示理论,顶点算子代数和几何之间的联系,以及二维共形场论的代数和分析方法之间的联系。 本文主要研究了以下几个问题:(1)月光顶点算子代数的Frenkel-Lepowsky-Meurman唯一性猜想。我们的目标是完全证明这个猜想,并得到Griess代数的一个特征(与Monster单群无关)。这是中心荷全纯顶点算子代数分类程序的一部分. (2)N=2酉顶点算子超代数的手征环(物理学家在研究超共形场论和超弦理论时定义的)和Calabi-Yau流形的椭圆亏格。目的是了解手征环在顶点算子超代数的结构和表示理论中所起的作用,并研究与Calabi-Yau流形相关联的顶点算子超代数的手征环在何种程度上决定该流形的椭圆亏格. (3)顶点算子代数(共形场论的代数方法)和共形网(共形场论的解析方法)之间的联系。这是一个长期的计划。我们的目标是从对方构造顶点算子代数和共形网。顶点算子代数理论不仅为二维量子共形场论提供了代数基础,而且与表示论、群论、模形式、拓扑变式、C*-代数等重要的数学领域有着密切的联系。计划中的研究将顶点代数算子代数与拓扑学、C*-代数和量子场论联系起来,在数学和物理学中都有重要的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chongying Dong其他文献

emS/em-matrix in permutation orbifolds
置换轨形中的 emS/em 矩阵
  • DOI:
    10.1016/j.jalgebra.2022.05.025
  • 发表时间:
    2022-09-15
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Chongying Dong;Feng Xu;Nina Yu
  • 通讯作者:
    Nina Yu
顶点算子代数$V_{L}^{+}$的有理性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cuipo Jiang;Xingjun Lin;Chongying Dong
  • 通讯作者:
    Chongying Dong
RETRACTED ARTICLE: Modular framed vertex operator algebras
  • DOI:
    10.1007/s40879-018-0257-6
  • 发表时间:
    2018-05-31
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Chongying Dong;Ching Hung Lam;Li Ren
  • 通讯作者:
    Li Ren
A characterization of vertex operator algebra V_Z^+: I
顶点算子代数 V_Z^ 的表征:I
THE IRREDUCIBLE MODULES AND FUSION RULES FOR THE PARAFERMION VERTEX OPERATOR ALGEBRAS

Chongying Dong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chongying Dong', 18)}}的其他基金

Rational Vertex Operator Algebras
有理顶点算子代数
  • 批准号:
    1404741
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Proposal on International Conferences on Vertex Algebra and Related Topics
关于顶点代数及相关主题国际会议的提案
  • 批准号:
    1042747
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Vertex Operator Algebras
顶点算子代数
  • 批准号:
    0856468
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
International Conference on Algebra and Related Areas
代数及相关领域国际会议
  • 批准号:
    0701554
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Topics in Vertex Operator Algebras
顶点算子代数主题
  • 批准号:
    0245548
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Workshop on Infinite Dimensional Lie Theory and Its Applications; July 17-25, 2003; Toronto, Canada
无限维李理论及其应用研讨会;
  • 批准号:
    0320780
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Vertex Operator Algebras and Their Automorphisms
顶点算子代数及其自同构
  • 批准号:
    9987656
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Vertex Operator Algebras and Monstrous Moonshine
顶点算子代数和巨大的 Moonshine
  • 批准号:
    9700923
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Representation Theory of Vertex Operator Algebra
数学科学:顶点算子代数的表示论
  • 批准号:
    9303374
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
  • 批准号:
    2200862
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Modular linear differential equations and vertex operator algebras
模线性微分方程和顶点算子代数
  • 批准号:
    22K03249
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Higher Quantum Airy Structures from Vertex Operator Algebras
顶点算子代数的更高量子艾里结构
  • 批准号:
    569537-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Research on vertex operator algebras by using Conway groups
利用康威群研究顶点算子代数
  • 批准号:
    21K03195
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on uniform construction and automorphism groups of holomorphic vertex operator algebras of central charge 24
中心电荷全纯顶点算子代数的一致构造和自同构群研究 24
  • 批准号:
    20K03505
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Symmetric functions and vertex operator algebras
对称函数和顶点算子代数
  • 批准号:
    2279467
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Vertex Operator Algebras, Number Theory, and Related Topics
顶点算子代数、数论及相关主题
  • 批准号:
    1802478
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research on uniqueness of holomorphic vertex operator algebras of central charge 24 by using reverse orbifold construction
利用逆轨道折叠结构研究中心电荷24全纯顶点算子代数的唯一性
  • 批准号:
    17K05154
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vertex operator algebras and modular differential equations
顶点算子代数和模微分方程
  • 批准号:
    17K05171
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAPSI: Modular Vertex Operator Algebras Associated with the Virasoro Algebra
EAPSI:与 Virasoro 代数相关的模顶点算子代数
  • 批准号:
    1713945
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了