Collaborative Research: FRG: New development on nonparametric modeling and inferences with biological applications
合作研究:FRG:非参数建模和生物学应用推论的新进展
基本信息
- 批准号:0354223
- 负责人:
- 金额:$ 55.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objectives of this proposal are to develop new and widely applicablesemiparametric and nonparametric approaches to solve challengingstatistical problems from computational biology. Frontiers of biologicalresearch such as normalization and analysis of microarray and proteomicdata, functional connectivity of brains, covariate effects on longitudinaland functional data, and prediction of individual response trajectorieshave generated a number of outstanding statistical challenges. Severalnew semiparametric and nonparametric models have been introduced toaddress the imminent needs for the aforementioned biological applications. A number of innovative methods on nonparametric estimation and inferencesare proposed. Their properties will be investigated via both asymptotictheory and simulations. Their efficacy in biological applications will becarefully scrutinized. This proposal not only introduces a number ofinnovative techniques and useful statistical models, but also providesvarious new insights into nonparametric inferences. The research findingswill have significant impact on the future development of statisticaltheories and methodologies.Technological invention and information advancement have revolutionizedscientific research and technological development. Quantitative methodshave been widely employed in scientific communities. They have playedpivotal roles in knowledge discovery. This proposal intends to developnew nonparametric techniques and theories that arise from frontiers ofscientific development. In particular, the investigators will developmodels and cutting-edge technologies for the analysis of microarray,proteomic, longitudinal and functional data and fMRI brain images. Commoncharacteristics of these data are their complexity and size, wherenonparametric techniques are particularly powerful and under developed.The proposed techniques address imminent needs in computational aspects ofmolecular biology, neurology, and epidemiology. In addition, they willintegrate new mathematical developments with those in science andengineering, which empowers new knowledge discoveries and prudent policymaking. Undergraduate and graduate students, postdoctors andunderrepresented groups will be trained as results of this research.
本提案的目标是开发新的和广泛适用的半参数和非参数方法来解决计算生物学中具有挑战性的统计问题。生物研究的前沿,如微阵列和蛋白质组数据的规范化和分析,大脑的功能连接,纵向和功能数据的协变量效应,以及个体反应轨迹的预测,已经产生了许多突出的统计挑战。一些新的半参数和非参数模型已经被引入以满足上述生物应用的迫切需要。提出了一些关于非参数估计和推理的创新方法。它们的性质将通过渐近理论和模拟来研究。它们在生物应用方面的功效将被仔细审查。本文不仅介绍了一些创新的技术和有用的统计模型,而且对非参数推理提供了各种新的见解。研究结果将对统计理论和方法的未来发展产生重大影响。技术发明和信息的进步使科学研究和技术发展发生了革命性的变化。定量方法已广泛应用于科学界。他们在知识发现中发挥了关键作用。本提案旨在发展新的非参数技术和理论,这些技术和理论出现在科学发展的前沿。特别是,研究人员将为微阵列,蛋白质组学,纵向和功能数据以及fMRI脑图像的分析开发模型和尖端技术。这些数据的共同特征是它们的复杂性和规模,而非参数技术在这方面特别强大和不发达。提出的技术解决了分子生物学、神经病学和流行病学计算方面的迫切需求。此外,他们还将把新的数学发展与科学和工程领域的发展相结合,从而促进新知识的发现和审慎的决策。作为这项研究的结果,本科生和研究生、博士后和代表性不足的群体将得到培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianqing Fan其他文献
Deep Neural Networks for Nonparametric Interaction Models with Diverging Dimension
具有发散维度的非参数交互模型的深度神经网络
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sohom Bhattacharya;Jianqing Fan;Debarghya Mukherjee - 通讯作者:
Debarghya Mukherjee
Dynamic nonparametric filtering with application to volatility estimation
动态非参数滤波及其在波动率估计中的应用
- DOI:
10.1016/b978-044451378-6/50021-1 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Ming;Jianqing Fan;V. Spokoiny - 通讯作者:
V. Spokoiny
Improving Covariate Balancing Propensity Score : A Doubly Robust and Efficient Approach ∗
提高协变量平衡倾向评分:双重稳健和高效的方法*
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jianqing Fan;K. Imai;Han Liu;Y. Ning;Xiaolin Yang - 通讯作者:
Xiaolin Yang
Features of Big Data and sparsest solution in high confidence set
- DOI:
10.1201/b16720-48 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jianqing Fan - 通讯作者:
Jianqing Fan
Approaches to High-Dimensional Covariance and Precision Matrix Estimations
高维协方差和精度矩阵估计的方法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jianqing Fan;Yuan Liao;Han Liu - 通讯作者:
Han Liu
Jianqing Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianqing Fan', 18)}}的其他基金
Interface of Statistical Learning and Optimal Decisions
统计学习和最优决策的接口
- 批准号:
2210833 - 财政年份:2022
- 资助金额:
$ 55.2万 - 项目类别:
Continuing Grant
DMS/NIGMS 2: Collaborative Research: Developing Statistical Learning Methods for Revealing the Molecular Signatures of Microvascular Changes in Neural Injury
DMS/NIGMS 2:合作研究:开发统计学习方法来揭示神经损伤中微血管变化的分子特征
- 批准号:
2053832 - 财政年份:2021
- 资助金额:
$ 55.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Flexible Network Inference
FRG:协作研究:灵活的网络推理
- 批准号:
2052926 - 财政年份:2021
- 资助金额:
$ 55.2万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Methods for RNA-seq Based Transcriptomic Analysis of Macrophage Function in Spinal Cord Injury
合作研究:基于RNA-seq的脊髓损伤中巨噬细胞功能转录组学分析的统计方法
- 批准号:
1662139 - 财政年份:2017
- 资助金额:
$ 55.2万 - 项目类别:
Continuing Grant
Robust and Distributed Statistical Learning from Big Data
从大数据中进行稳健的分布式统计学习
- 批准号:
1712591 - 财政年份:2017
- 资助金额:
$ 55.2万 - 项目类别:
Continuing Grant
Collaborative Research: Interface of Probability and Statistics for High-dimensional Inference
合作研究:高维推理的概率统计接口
- 批准号:
1406266 - 财政年份:2014
- 资助金额:
$ 55.2万 - 项目类别:
Continuing Grant
Statistical Inferences on Massive Data
海量数据统计推断
- 批准号:
1206464 - 财政年份:2012
- 资助金额:
$ 55.2万 - 项目类别:
Continuing Grant
Workshop on: Discovery in Complex or Massive Datasets: Common Statistical Themes
研讨会:复杂或海量数据集中的发现:常见统计主题
- 批准号:
0751568 - 财政年份:2007
- 资助金额:
$ 55.2万 - 项目类别:
Standard Grant
Collaborative Research: Development of bioinformatic methods for studying gene expression network inflammation and neuronal regeneration
合作研究:开发用于研究基因表达网络炎症和神经元再生的生物信息学方法
- 批准号:
0714554 - 财政年份:2007
- 资助金额:
$ 55.2万 - 项目类别:
Continuing Grant
High-dimensional statistical learning and inference
高维统计学习和推理
- 批准号:
0704337 - 财政年份:2007
- 资助金额:
$ 55.2万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 55.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 55.2万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 55.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 55.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 55.2万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 55.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 55.2万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 55.2万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 55.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 55.2万 - 项目类别:
Continuing Grant