Collaborative Research: Statistical Methods for RNA-seq Based Transcriptomic Analysis of Macrophage Function in Spinal Cord Injury
合作研究:基于RNA-seq的脊髓损伤中巨噬细胞功能转录组学分析的统计方法
基本信息
- 批准号:1662139
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spinal cord injury causes functional impairment via the primary mechanical injury, followed by subsequent secondary injury mechanisms at cellular levels. Most research has focused on understanding the mechanisms of secondary injury since it corresponds to functional deficits. Inflammation is a principal mediator of the secondary injury cascade, with macrophages contributing profoundly to the secondary injury. Macrophages, one of the most important type of immune cells, migrate towards the injured spinal cord and engulf myelin debris that is generated at injury onset to form myelin-laden macrophages. In this project, the investigators will utilize RNA sequencing, a powerful method for analyzing global gene expression levels, and develop new statistical approaches to address biological questions related to how myelin-laden macrophages amplify inflammatory response and promote secondary injury. These studies will help researchers understand molecular mechanisms for spinal cord injury and shed new light on the treatment by targeting myelin-laden macrophages. This project aims to answer important questions regarding the mechanisms of secondary injury through the integration of new statistical methods and cutting-edge biological techniques. The central hypothesis is that myelin-laden macrophages in the injured spinal cord promote a local pathologic process and distal organ dysfunction. Specifically, the investigators will determine their molecular patterns and functions, study whether myelin-laden macrophages released extracellular vesicles (exosomes) carry microRNAs from myelin debris to recipient cells and then regulate their functions, and investigate whether these exosomes can enter the bloodstream and contribute to systemic inflammatory response syndrome and distal organ dysfunction. New statistical tools will be developed to analyze large datasets of microRNA sequencing and mRNA sequencing from multiple cell types and time points. In particular, novel robust statistical techniques are proposed to answer the following important questions: how to uniformly and robustly estimate large-scale gene expressions; how to compare them reliably across multiple phenotypes and measured across different platforms; how to accurately identify microRNAs' mRNA targets via sparse regression; how to use quantitative tools for studies of molecular mechanisms and comparisons of gene expression networks; how to control false discovery rate under general dependence; how to perform robust variable selection; how to estimate the size of spurious correlations. The proposed methods will be applied to newly collected, as well as existing data to answer the biological questions related to spinal cord injury. The project will integrate research and education by involving undergraduates, graduate students and postdoctoral fellows, creating new datasets, and developing publicly available software. Students from underrepresented groups will be trained as part of this project. The results will be disseminated broadly through presentations at seminars, conferences, and professional association meetings.
脊髓损伤通过原发性机械损伤引起功能障碍,随后是细胞水平的继发性损伤机制。 大多数研究都集中在了解继发性损伤的机制,因为它对应于功能缺陷。炎症是二次损伤级联反应的主要介质,巨噬细胞对二次损伤有深远的影响。 巨噬细胞是最重要的免疫细胞类型之一,其向损伤的脊髓迁移并吞噬在损伤开始时产生的髓鞘碎片以形成载有髓鞘的巨噬细胞。在这个项目中,研究人员将利用RNA测序,这是一种分析全球基因表达水平的强大方法,并开发新的统计方法来解决与髓鞘巨噬细胞如何放大炎症反应和促进继发性损伤有关的生物学问题。这些研究将帮助研究人员了解脊髓损伤的分子机制,并通过靶向富含髓鞘的巨噬细胞来阐明治疗方法。该项目旨在通过整合新的统计方法和尖端生物技术来回答有关继发性损伤机制的重要问题。中心假设是,在受损的脊髓中的髓鞘负载的巨噬细胞促进局部病理过程和远端器官功能障碍。具体来说,研究人员将确定它们的分子模式和功能,研究充满髓鞘的巨噬细胞释放的细胞外囊泡(exosomes)是否将microRNA从髓鞘碎片携带到受体细胞,然后调节它们的功能,并研究这些exosomes是否可以进入血液并导致全身炎症反应综合征和远端器官功能障碍。将开发新的统计工具来分析来自多种细胞类型和时间点的microRNA测序和mRNA测序的大型数据集。特别是,提出了新的鲁棒统计技术来回答以下重要问题:如何统一和鲁棒地估计大规模基因表达;如何在多个表型和不同平台上可靠地比较它们;如何通过稀疏回归准确地识别microRNA的mRNA靶标;如何使用定量工具研究分子机制和比较基因表达网络;如何在一般相关下控制错误发现率;如何进行稳健的变量选择;如何估计伪相关的大小。 所提出的方法将应用于新收集的数据以及现有的数据,以回答与脊髓损伤相关的生物学问题。 该项目将通过让本科生、研究生和博士后研究员参与,创建新的数据集,并开发公开可用的软件,来整合研究和教育。 作为该项目的一部分,将对代表性不足群体的学生进行培训。 研究结果将通过在研讨会、会议和专业协会会议上的介绍广泛传播。
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Communication-Efficient Accurate Statistical Estimation
- DOI:10.1080/01621459.2021.1969238
- 发表时间:2019-06
- 期刊:
- 影响因子:3.7
- 作者:Jianqing Fan;Yongyi Guo;Kaizheng Wang
- 通讯作者:Jianqing Fan;Yongyi Guo;Kaizheng Wang
Spectral Methods for Data Science: A Statistical Perspective
- DOI:10.1561/2200000079
- 发表时间:2021-01-01
- 期刊:
- 影响因子:32.8
- 作者:Chen, Yuxin;Chi, Yuejie;Ma, Cong
- 通讯作者:Ma, Cong
DISTRIBUTED ESTIMATION OF PRINCIPAL EIGENSPACES
- DOI:10.1214/18-aos1713
- 发表时间:2019-12-01
- 期刊:
- 影响因子:4.5
- 作者:Fan, Jianqing;Wang, Dong;Zhu, Ziwei
- 通讯作者:Zhu, Ziwei
Hoeffding's inequality for Markov chains and its applications to statistical learning
马尔可夫链的 Hoeffding 不等式及其在统计学习中的应用
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:6
- 作者:Fan, J.
- 通讯作者:Fan, J.
An $\ell_{\infty}$ eigenvector perturbation bound and its application to robust covariance estimation
$ell_{infty}$ 特征向量扰动界限及其在鲁棒协方差估计中的应用
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:6
- 作者:Fan, J.;Wang, W.;Zhong, Y.
- 通讯作者:Zhong, Y.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianqing Fan其他文献
Deep Neural Networks for Nonparametric Interaction Models with Diverging Dimension
具有发散维度的非参数交互模型的深度神经网络
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sohom Bhattacharya;Jianqing Fan;Debarghya Mukherjee - 通讯作者:
Debarghya Mukherjee
Dynamic nonparametric filtering with application to volatility estimation
动态非参数滤波及其在波动率估计中的应用
- DOI:
10.1016/b978-044451378-6/50021-1 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Ming;Jianqing Fan;V. Spokoiny - 通讯作者:
V. Spokoiny
Improving Covariate Balancing Propensity Score : A Doubly Robust and Efficient Approach ∗
提高协变量平衡倾向评分:双重稳健和高效的方法*
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jianqing Fan;K. Imai;Han Liu;Y. Ning;Xiaolin Yang - 通讯作者:
Xiaolin Yang
Features of Big Data and sparsest solution in high confidence set
- DOI:
10.1201/b16720-48 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jianqing Fan - 通讯作者:
Jianqing Fan
Approaches to High-Dimensional Covariance and Precision Matrix Estimations
高维协方差和精度矩阵估计的方法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jianqing Fan;Yuan Liao;Han Liu - 通讯作者:
Han Liu
Jianqing Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianqing Fan', 18)}}的其他基金
Interface of Statistical Learning and Optimal Decisions
统计学习和最优决策的接口
- 批准号:
2210833 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
DMS/NIGMS 2: Collaborative Research: Developing Statistical Learning Methods for Revealing the Molecular Signatures of Microvascular Changes in Neural Injury
DMS/NIGMS 2:合作研究:开发统计学习方法来揭示神经损伤中微血管变化的分子特征
- 批准号:
2053832 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Flexible Network Inference
FRG:协作研究:灵活的网络推理
- 批准号:
2052926 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Robust and Distributed Statistical Learning from Big Data
从大数据中进行稳健的分布式统计学习
- 批准号:
1712591 - 财政年份:2017
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Collaborative Research: Interface of Probability and Statistics for High-dimensional Inference
合作研究:高维推理的概率统计接口
- 批准号:
1406266 - 财政年份:2014
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Workshop on: Discovery in Complex or Massive Datasets: Common Statistical Themes
研讨会:复杂或海量数据集中的发现:常见统计主题
- 批准号:
0751568 - 财政年份:2007
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: Development of bioinformatic methods for studying gene expression network inflammation and neuronal regeneration
合作研究:开发用于研究基因表达网络炎症和神经元再生的生物信息学方法
- 批准号:
0714554 - 财政年份:2007
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
High-dimensional statistical learning and inference
高维统计学习和推理
- 批准号:
0704337 - 财政年份:2007
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Workshop on Frontiers of Statistics: Nonparametric Modeling of Complex Data
统计前沿研讨会:复杂数据的非参数建模
- 批准号:
0531839 - 财政年份:2006
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247794 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
- 批准号:
2327625 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308445 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant