Collaborative Research: Development of bioinformatic methods for studying gene expression network inflammation and neuronal regeneration

合作研究:开发用于研究基因表达网络炎症和神经元再生的生物信息学方法

基本信息

  • 批准号:
    0714554
  • 负责人:
  • 金额:
    $ 61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-15 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

New bioinformatic and statistical methods will be developed to study traumatic central nervous system including spinal cord, which provokes an inflammatory response that generates substantial secondary tissue damage and inhibits neuronal regeneration. Anti-inflammatory treatment of human spinal core injury and itstiming must be based on knowledge of the types of cells participating in the inflammatory response, the time after injury when they appear and the nature of their actions. However, inflammatory cascades and relationship with neurogenesis are complicated and consequence of central nervous system injury including spinal cord injury is poorly understood. Invading macrophages and resident microglia cells, the two major cell types that are from monocytic lineage play major role in the inflammatory process. Due to the lack of specific markers, the functional roles of invading macrophages from activated microglia within injuredspinal cord are not largely unknown. We propose to use microarray techniques to investigate expression profiles on microglia and macrophages in different time points and the expression network between inflammation and neurogenesis. New methods are proposed to label defined cell populations in microglia/macrophage deleted mice. New statistical techniques will be developed to address directly thechallenges from our biological studies. These include removing intensity effect of the Affymetrix data, identifying significant genes and determining gene expressions patterns over time, identifying a small group of genes that differentiate invading macrophages from activated microglia in the spinal cord, among others. They involve the statistical estimation, testing, variable selection, classification and network modeling in high-dimensional feature spaces. These emerging problems will be confronted via developing new statistical methods to address the challenges associated with high-dimensionality. At the same time, the investigators also intend to provide fundamental understanding, via asymptotic analysis and simulation studies, to these problems and their associated methodologies. A distinguished feature of the proposal is the combination the strengths of our expertise in statistics and molecular biology to gain better understanding of moleculardisturbances in spinal cord and central nervous system injury.The proposal investigates molecular disturbances in spinal cord and central nervous system injury. Our aims include identifying genes that reveal the distinct functional profiles of resident microglia and invading macrophages in spinal cord injury, and selecting the genes that are uniquely altered during specific facets of the neuronal response to inflammation. These approaches can not only help us understand the molecular mechanisms of inflammatory responses in spinal cord injury, but also potentially identify genes to be targeted for therapeutic intervention following spinal core injury. In addition, our developed cutting-edging statistical techniques and bioinformatic tools can be applied to other biological and statistical researches. The project will also integrate research and education by working closely with students and funding them in the form of research assistantships, creating datasets, and developing publicly available computer code (both made available through the web) for each of the main research endeavors funded by this proposal. Various research findings and examples will be simplified and taught in both undergraduate and graduate courses.In particular, they will be used in supervising undergraduate senior theses and Ph.D. theses. Postdoctoral fellows and underrepresented groups will be trained as a part of our research investigation. The results will be disseminated broadly through presentations at seminars, conferences, professional association meetings, and internet.
将开发新的生物信息学和统计学方法来研究包括脊髓在内的创伤性中枢神经系统,这种系统会引发炎症反应,从而产生实质性的继发性组织损伤并抑制神经元再生。人类脊髓核心损伤的抗炎治疗和治疗必须基于对参与炎症反应的细胞的类型、损伤后出现的时间和它们的行为性质的了解。然而,炎症性级联反应及其与神经发生的关系是复杂的,包括脊髓损伤在内的中枢神经系统损伤的后果尚不清楚。侵袭性巨噬细胞和驻留的小胶质细胞是单核细胞系的两种主要细胞类型,它们在炎症过程中发挥着重要作用。由于缺乏特异性标记物,损伤脊髓内活化的小胶质细胞侵袭巨噬细胞的功能作用并不是很清楚。我们建议使用微阵列技术来研究不同时间点小胶质细胞和巨噬细胞的表达谱,以及炎症和神经发生之间的表达网络。提出了一种新的方法来标记小胶质细胞/巨噬细胞缺失小鼠的特定细胞群。将开发新的统计技术来直接解决我们生物学研究中的挑战。这些措施包括消除Affymetrix数据的强度效应,识别重要基因并确定随时间推移的基因表达模式,识别一小群区分入侵的巨噬细胞和激活的脊髓小胶质细胞的基因等等。它们涉及高维特征空间中的统计估计、检验、变量选择、分类和网络建模。将通过开发新的统计方法来应对与高维相关的挑战,从而面对这些新出现的问题。同时,研究人员还打算通过渐近分析和模拟研究提供对这些问题及其相关方法的基本理解。该提案的一个显著特点是结合了我们在统计学和分子生物学方面的专业知识,以更好地了解脊髓和中枢神经系统损伤中的分子紊乱。我们的目标包括识别在脊髓损伤中揭示驻留的小胶质细胞和侵袭的巨噬细胞的不同功能特征的基因,以及选择在神经元对炎症的特定反应的特定方面唯一改变的基因。这些方法不仅可以帮助我们了解脊髓损伤炎症反应的分子机制,而且有可能识别脊髓损伤后治疗干预的靶向基因。此外,我们开发的尖端统计技术和生物信息学工具可以应用于其他生物学和统计研究。该项目还将通过与学生密切合作,以研究助学金的形式资助他们,创建数据集,并为该提案资助的每一项主要研究工作开发公开可用的计算机代码(两者均可通过网络获得),从而将研究与教育结合起来。各种研究成果和实例将被简化并在本科生和研究生课程中教授,特别是用于指导本科高级论文和博士论文。博士后研究员和代表性不足的群体将接受培训,作为我们研究调查的一部分。结果将通过在研讨会、会议、专业协会会议和互联网上的陈述广泛传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianqing Fan其他文献

Deep Neural Networks for Nonparametric Interaction Models with Diverging Dimension
具有发散维度的非参数交互模型的深度神经网络
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sohom Bhattacharya;Jianqing Fan;Debarghya Mukherjee
  • 通讯作者:
    Debarghya Mukherjee
Dynamic nonparametric filtering with application to volatility estimation
动态非参数滤波及其在波动率估计中的应用
  • DOI:
    10.1016/b978-044451378-6/50021-1
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ming;Jianqing Fan;V. Spokoiny
  • 通讯作者:
    V. Spokoiny
Approaches to High-Dimensional Covariance and Precision Matrix Estimations
高维协方差和精度矩阵估计的方法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqing Fan;Yuan Liao;Han Liu
  • 通讯作者:
    Han Liu
Improving Covariate Balancing Propensity Score : A Doubly Robust and Efficient Approach ∗
提高协变量平衡倾向评分:双重稳健和高效的方法*
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqing Fan;K. Imai;Han Liu;Y. Ning;Xiaolin Yang
  • 通讯作者:
    Xiaolin Yang
Features of Big Data and sparsest solution in high confidence set
  • DOI:
    10.1201/b16720-48
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqing Fan
  • 通讯作者:
    Jianqing Fan

Jianqing Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianqing Fan', 18)}}的其他基金

Interface of Statistical Learning and Optimal Decisions
统计学习和最优决策的接口
  • 批准号:
    2210833
  • 财政年份:
    2022
  • 资助金额:
    $ 61万
  • 项目类别:
    Continuing Grant
DMS/NIGMS 2: Collaborative Research: Developing Statistical Learning Methods for Revealing the Molecular Signatures of Microvascular Changes in Neural Injury
DMS/NIGMS 2:合作研究:开发统计学习方法来揭示神经损伤中微血管变化的分子特征
  • 批准号:
    2053832
  • 财政年份:
    2021
  • 资助金额:
    $ 61万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Flexible Network Inference
FRG:协作研究:灵活的网络推理
  • 批准号:
    2052926
  • 财政年份:
    2021
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Methods for RNA-seq Based Transcriptomic Analysis of Macrophage Function in Spinal Cord Injury
合作研究:基于RNA-seq的脊髓损伤中巨噬细胞功能转录组学分析的统计方法
  • 批准号:
    1662139
  • 财政年份:
    2017
  • 资助金额:
    $ 61万
  • 项目类别:
    Continuing Grant
Robust and Distributed Statistical Learning from Big Data
从大数据中进行稳健的分布式统计学习
  • 批准号:
    1712591
  • 财政年份:
    2017
  • 资助金额:
    $ 61万
  • 项目类别:
    Continuing Grant
Collaborative Research: Interface of Probability and Statistics for High-dimensional Inference
合作研究:高维推理的概率统计接口
  • 批准号:
    1406266
  • 财政年份:
    2014
  • 资助金额:
    $ 61万
  • 项目类别:
    Continuing Grant
Statistical Inferences on Massive Data
海量数据统计推断
  • 批准号:
    1206464
  • 财政年份:
    2012
  • 资助金额:
    $ 61万
  • 项目类别:
    Continuing Grant
Workshop on: Discovery in Complex or Massive Datasets: Common Statistical Themes
研讨会:复杂或海量数据集中的发现:常见统计主题
  • 批准号:
    0751568
  • 财政年份:
    2007
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant
High-dimensional statistical learning and inference
高维统计学习和推理
  • 批准号:
    0704337
  • 财政年份:
    2007
  • 资助金额:
    $ 61万
  • 项目类别:
    Continuing Grant
Workshop on Frontiers of Statistics: Nonparametric Modeling of Complex Data
统计前沿研讨会:复杂数据的非参数建模
  • 批准号:
    0531839
  • 财政年份:
    2006
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331437
  • 财政年份:
    2024
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337028
  • 财政年份:
    2024
  • 资助金额:
    $ 61万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 61万
  • 项目类别:
    Continuing Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337027
  • 财政年份:
    2024
  • 资助金额:
    $ 61万
  • 项目类别:
    Continuing Grant
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331438
  • 财政年份:
    2024
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant
Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
  • 批准号:
    2405548
  • 财政年份:
    2024
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 61万
  • 项目类别:
    Continuing Grant
Collaborative Research: HNDS-I. Mobility Data for Communities (MD4C): Uncovering Segregation, Climate Resilience, and Economic Development from Cell-Phone Records
合作研究:HNDS-I。
  • 批准号:
    2420945
  • 财政年份:
    2024
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant
SBP: Collaborative Research: Improving Engagement with Professional Development Programs by Attending to Teachers' Psychosocial Experiences
SBP:协作研究:通过关注教师的社会心理体验来提高对专业发展计划的参与度
  • 批准号:
    2314254
  • 财政年份:
    2023
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311878
  • 财政年份:
    2023
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了