High-dimensional statistical learning and inference

高维统计学习和推理

基本信息

  • 批准号:
    0704337
  • 负责人:
  • 金额:
    $ 92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-15 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

The challenge of high-dimensionality characterizes many contemporary statistical problems arising frommany frontiers of scientific research and technological development. In high-dimensional statistical research, low-dimensional structures, which entail sparsity under suitable parametrization, are needed to be explored in order to circumvent the issue of noise accumulation with dimensionality. This proposal intends to confront a number of important high-dimensional statistical problems from genomics, machine learning, health studies, economics, and finance. These include various emerging issues from the analysis of microarray data such as normalization, significance analysis, and disease classification; variable selection and feature extraction from high-dimensional statistical learning; sparse classification and clustering from high-dimensional feature spaces; high-dimensional covariance matrix estimation for asset allocation and portfolio management; sparse covariance estimation for spatial and temporal studies and genetic networks. All of these problems have their distinguished characters from the context of their applications, but nevertheless share similar challenges with high dimensionality and admit features of sparsity. These emerging problems of high societal impacts will be confronted via developing new statistical methods to address the features and challenges associated with high-dimensionality, from statistical computation, feature selection, to noise reduction. At the same time, the PI also intends to provide fundamental understanding, via asymptotic analysis and simulation studies, to these problems and their associated methodologies that push theory, methods, and computation forward.Thanks to technological innovation, the availability of large-scale and complex data are widely available nowadays in many contemporary scientific problems. High-dimensional statistical models are required to address these scientific endeavors. The challenges of high-dimensionality arise from diverse fields of sciences and the humanities, ranging from genomics and health sciences to economics and finance. In these fields, variable selection, feature extraction, sparsity explorations are crucial for knowledge discovery. In this proposal, we propose to develop cutting-edge statistical theory and methods to address these problems from genomic studies, machine learning, health science, economics, and finance. The proposed techniques and results will not only help researchers to solve emerging problems in their disciplines, but also have strong impact on statistical thinking, methodological development, and theoretical studies.
高维性的挑战是当代许多科学研究和技术发展前沿所产生的统计问题的特征。在高维统计研究中,需要探索在适当的参数化下具有稀疏性的低维结构,以避免维数噪声累积的问题。该提案旨在面对来自基因组学,机器学习,健康研究,经济学和金融学的一些重要的高维统计问题。这些包括各种新出现的问题,从分析微阵列数据,如归一化,显着性分析和疾病分类;变量选择和特征提取从高维统计学习;稀疏分类和聚类从高维特征空间;高维协方差矩阵估计的资产分配和投资组合管理;稀疏协方差估计的空间和时间的研究和遗传网络。所有这些问题都有其独特的特点,从他们的应用背景,但仍然有类似的挑战,高维和稀疏性的特点。这些新出现的高社会影响的问题将通过开发新的统计方法来解决与高维相关的特征和挑战,从统计计算,特征选择到降噪。同时,PI还通过渐近分析和模拟研究,对这些问题及其相关方法进行基本理解,推动理论、方法和计算向前发展。由于技术创新,大规模和复杂数据的可用性在当今许多科学问题中广泛存在。需要高维统计模型来解决这些科学问题。高维度的挑战来自不同的科学和人文领域,从基因组学和健康科学到经济学和金融学。在这些领域中,变量选择、特征提取、稀疏性探索是知识发现的关键。在这项提案中,我们建议开发尖端的统计理论和方法,以解决来自基因组研究,机器学习,健康科学,经济学和金融学的这些问题。 所提出的技术和结果不仅有助于研究人员解决其学科中出现的问题,而且对统计思维,方法发展和理论研究产生了强烈的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianqing Fan其他文献

Deep Neural Networks for Nonparametric Interaction Models with Diverging Dimension
具有发散维度的非参数交互模型的深度神经网络
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sohom Bhattacharya;Jianqing Fan;Debarghya Mukherjee
  • 通讯作者:
    Debarghya Mukherjee
Dynamic nonparametric filtering with application to volatility estimation
动态非参数滤波及其在波动率估计中的应用
  • DOI:
    10.1016/b978-044451378-6/50021-1
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ming;Jianqing Fan;V. Spokoiny
  • 通讯作者:
    V. Spokoiny
Improving Covariate Balancing Propensity Score : A Doubly Robust and Efficient Approach ∗
提高协变量平衡倾向评分:双重稳健和高效的方法*
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqing Fan;K. Imai;Han Liu;Y. Ning;Xiaolin Yang
  • 通讯作者:
    Xiaolin Yang
Features of Big Data and sparsest solution in high confidence set
  • DOI:
    10.1201/b16720-48
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqing Fan
  • 通讯作者:
    Jianqing Fan
Approaches to High-Dimensional Covariance and Precision Matrix Estimations
高维协方差和精度矩阵估计的方法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqing Fan;Yuan Liao;Han Liu
  • 通讯作者:
    Han Liu

Jianqing Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianqing Fan', 18)}}的其他基金

Interface of Statistical Learning and Optimal Decisions
统计学习和最优决策的接口
  • 批准号:
    2210833
  • 财政年份:
    2022
  • 资助金额:
    $ 92万
  • 项目类别:
    Continuing Grant
DMS/NIGMS 2: Collaborative Research: Developing Statistical Learning Methods for Revealing the Molecular Signatures of Microvascular Changes in Neural Injury
DMS/NIGMS 2:合作研究:开发统计学习方法来揭示神经损伤中微血管变化的分子特征
  • 批准号:
    2053832
  • 财政年份:
    2021
  • 资助金额:
    $ 92万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Flexible Network Inference
FRG:协作研究:灵活的网络推理
  • 批准号:
    2052926
  • 财政年份:
    2021
  • 资助金额:
    $ 92万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Methods for RNA-seq Based Transcriptomic Analysis of Macrophage Function in Spinal Cord Injury
合作研究:基于RNA-seq的脊髓损伤中巨噬细胞功能转录组学分析的统计方法
  • 批准号:
    1662139
  • 财政年份:
    2017
  • 资助金额:
    $ 92万
  • 项目类别:
    Continuing Grant
Robust and Distributed Statistical Learning from Big Data
从大数据中进行稳健的分布式统计学习
  • 批准号:
    1712591
  • 财政年份:
    2017
  • 资助金额:
    $ 92万
  • 项目类别:
    Continuing Grant
Collaborative Research: Interface of Probability and Statistics for High-dimensional Inference
合作研究:高维推理的概率统计接口
  • 批准号:
    1406266
  • 财政年份:
    2014
  • 资助金额:
    $ 92万
  • 项目类别:
    Continuing Grant
Statistical Inferences on Massive Data
海量数据统计推断
  • 批准号:
    1206464
  • 财政年份:
    2012
  • 资助金额:
    $ 92万
  • 项目类别:
    Continuing Grant
Workshop on: Discovery in Complex or Massive Datasets: Common Statistical Themes
研讨会:复杂或海量数据集中的发现:常见统计主题
  • 批准号:
    0751568
  • 财政年份:
    2007
  • 资助金额:
    $ 92万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of bioinformatic methods for studying gene expression network inflammation and neuronal regeneration
合作研究:开发用于研究基因表达网络炎症和神经元再生的生物信息学方法
  • 批准号:
    0714554
  • 财政年份:
    2007
  • 资助金额:
    $ 92万
  • 项目类别:
    Continuing Grant
Workshop on Frontiers of Statistics: Nonparametric Modeling of Complex Data
统计前沿研讨会:复杂数据的非参数建模
  • 批准号:
    0531839
  • 财政年份:
    2006
  • 资助金额:
    $ 92万
  • 项目类别:
    Standard Grant

相似国自然基金

基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
  • 批准号:
    10717610
  • 财政年份:
    2023
  • 资助金额:
    $ 92万
  • 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
  • 批准号:
    10572539
  • 财政年份:
    2023
  • 资助金额:
    $ 92万
  • 项目类别:
Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
  • 批准号:
    10572855
  • 财政年份:
    2023
  • 资助金额:
    $ 92万
  • 项目类别:
Learning How to Give Casual Explanations for Large Scale Virtual and Morphological Pharmacology
学习如何对大规模虚拟和形态药理学进行随意解释
  • 批准号:
    10713386
  • 财政年份:
    2023
  • 资助金额:
    $ 92万
  • 项目类别:
The epithelial matrisome and drug transport kinetics
上皮基质体和药物转运动力学
  • 批准号:
    10714617
  • 财政年份:
    2023
  • 资助金额:
    $ 92万
  • 项目类别:
Non-invasive hemodynamic and biomechanic imaging methods for early risk prediction in aortic dissection
用于主动脉夹层早期风险预测的非侵入性血流动力学和生物力学成像方法
  • 批准号:
    10716472
  • 财政年份:
    2023
  • 资助金额:
    $ 92万
  • 项目类别:
New Hardware and Software Developments for Improving Prostate Metabolic MR Imaging
用于改善前列腺代谢 MR 成像的新硬件和软件开发
  • 批准号:
    10680043
  • 财政年份:
    2023
  • 资助金额:
    $ 92万
  • 项目类别:
Bringing the clinic to the lab: the effects of forced and non-forced rehabilitation on functional recovery after spinal cord injury
将临床带入实验室:强制和非强制康复对脊髓损伤后功能恢复的影响
  • 批准号:
    10641259
  • 财政年份:
    2023
  • 资助金额:
    $ 92万
  • 项目类别:
Machine Learning and Radiomics Techniques for Analysis of Daily MRI in Glioblastoma Patients
用于分析胶质母细胞瘤患者日常 MRI 的机器学习和放射组学技术
  • 批准号:
    10751672
  • 财政年份:
    2023
  • 资助金额:
    $ 92万
  • 项目类别:
SCH: Novel and Interpretable Statistical Learning for Brain Images in AD/ADRDs
SCH:针对 AD/ADRD 大脑图像的新颖且可解释的统计学习
  • 批准号:
    10816764
  • 财政年份:
    2023
  • 资助金额:
    $ 92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了