DMS/NIGMS 2: Collaborative Research: Developing Statistical Learning Methods for Revealing the Molecular Signatures of Microvascular Changes in Neural Injury

DMS/NIGMS 2:合作研究:开发统计学习方法来揭示神经损伤中微血管变化的分子特征

基本信息

  • 批准号:
    2053832
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Spinal cord injury (SCI) is a traumatic and detrimental condition that can result in temporary or permanent paralysis. SCI also causes various paralysis-related disorders that can become debilitating and often life-threatening. It can also lead to functional impairment via the primary mechanical injury followed by subsequent secondary injury mechanisms at cellular levels, including cell death and spinal blood vessel damage. Disruption of the blood-spinal cord barrier (BSCB), the structure regulating molecular exchange between blood and spinal cord, is one of the most detrimental factors to functional recovery. The BSCB is composed of at least three types of cell-to-cell functions. Understanding the molecular characteristics and functions of these cells in response to injury is a major interest of SCI research. The PIs will use high throughput single cell RNA sequencing (scRNA-seq), a powerful technique for the dissection of gene expression at single-cell resolution. They will also develop novel modern statistical approaches to elucidate the molecular characterizations of principal cell types of BSCB in the injured spinal cord. The study will help us understand the complexity of blood vessels in response to SCI, generate novel therapeutic targets for SCI treatment, and create new statistical machine learning tools for big data analysis. The PIs plan to integrate research with education and outreach activities and disseminate the results, data, and software broadly to the public. This project aims to develop statistical machine learning theory and methods to answer important questions regarding the identification of new subpopulations of microvessels that have disease-relevant functions in SCI, as well as microvessel crosstalk with and regulation by infiltrating immune cells. The novelty is to combine advanced scRNA-seq technologies with robust high-dimensional statistical methods for three biological aims: a) define single-cell profiling of microvascular cells; b) determine the mechanisms of the alteration of subpopulations of microvascular cells in the injured spinal cord; and c) identify the crosstalk patterns between microvascular cells and infiltrating immune cells and their roles in neuroinflammation. The large quantities of complex data generated from the study will prompt new challenges in developing scalable robust and reliable statistics tools for efficient analysis of big scRNA-seq data. In particular, PIs plan to develop (a) large-scale cell subpopulation learning tools including multi-scale clustering and cell marker hunting algorithms and unsupervised feature screening and selection; (b) efficient and robust methods for identifying cell markers and differently expressed genes by developing scalable Hodges-Lehmann's method with false discovery rate controls; (c) more efficient factor-adjusted learning methods that take advantages of co-expression of genes in subpopulation learning, cell marker hunting, differently expressed genes selection, as well as cell-cell interaction by identifying important ligand-receptor pairs. These newly developed methods will be applied to the large-scale scRNA-seq data to answer the biological questions for SCI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
脊髓损伤(SCI)是一种创伤性和有害的状况,可导致暂时或永久性瘫痪。脊髓损伤还会导致各种瘫痪相关的疾病,这些疾病会使人虚弱,甚至危及生命。它还可以通过原发性机械损伤导致功能损伤,随后在细胞水平上继发性损伤机制,包括细胞死亡和脊髓血管损伤。血脊髓屏障(BSCB)是调节血液和脊髓之间分子交换的结构,其破坏是影响功能恢复的最有害因素之一。BSCB由至少三种细胞间功能组成。了解这些细胞对损伤反应的分子特征和功能是脊髓损伤研究的主要兴趣。pi将使用高通量单细胞RNA测序(scRNA-seq),这是一种在单细胞分辨率下解剖基因表达的强大技术。他们还将开发新的现代统计方法来阐明损伤脊髓中BSCB主要细胞类型的分子特征。该研究将帮助我们了解血管对脊髓损伤反应的复杂性,为脊髓损伤治疗产生新的治疗靶点,并为大数据分析创造新的统计机器学习工具。pi计划将研究与教育和外展活动结合起来,并向公众广泛传播结果、数据和软件。本项目旨在发展统计机器学习理论和方法,以回答关于识别在脊髓损伤中具有疾病相关功能的新微血管亚群,以及微血管与浸润免疫细胞的串扰和调节等重要问题。新颖之处在于将先进的scRNA-seq技术与强大的高维统计方法相结合,实现三个生物学目标:a)定义微血管细胞的单细胞谱;B)确定损伤脊髓微血管细胞亚群改变的机制;c)确定微血管细胞与浸润性免疫细胞之间的串扰模式及其在神经炎症中的作用。该研究产生的大量复杂数据将为开发可扩展、稳健和可靠的统计工具以有效分析大scRNA-seq数据带来新的挑战。特别是,pi计划开发(a)大规模细胞亚群学习工具,包括多尺度聚类和细胞标记搜索算法以及无监督特征筛选和选择;(b)通过开发具有错误发现率控制的可扩展的Hodges-Lehmann方法,高效且稳健地识别细胞标记物和不同表达的基因;(c)更有效的因子调整学习方法,利用亚群学习中基因的共表达、细胞标记寻找、不同表达的基因选择以及通过识别重要的配体-受体对的细胞-细胞相互作用。这些新开发的方法将应用于大规模scRNA-seq数据,以回答SCI的生物学问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Do We Exploit all Information for Counterfactual Analysis? Benefits of Factor Models and Idiosyncratic Correction
  • DOI:
    10.1080/01621459.2021.2004895
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jianqing Fan;Ricardo P. Masini;M. C. Medeiros
  • 通讯作者:
    Jianqing Fan;Ricardo P. Masini;M. C. Medeiros
Spectral Methods for Data Science: A Statistical Perspective
Optimal Covariate Balancing Conditions in Propensity Score Estimation
Policy Optimization Using Semiparametric Models for Dynamic Pricing
  • DOI:
    10.1080/01621459.2022.2128359
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqing Fan;Yongyi Guo;Mengxin Yu
  • 通讯作者:
    Jianqing Fan;Yongyi Guo;Mengxin Yu
Sample-Efficient Reinforcement Learning for Linearly-Parameterized MDPs with a Generative Model
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianqing Fan其他文献

Deep Neural Networks for Nonparametric Interaction Models with Diverging Dimension
具有发散维度的非参数交互模型的深度神经网络
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sohom Bhattacharya;Jianqing Fan;Debarghya Mukherjee
  • 通讯作者:
    Debarghya Mukherjee
Dynamic nonparametric filtering with application to volatility estimation
动态非参数滤波及其在波动率估计中的应用
  • DOI:
    10.1016/b978-044451378-6/50021-1
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ming;Jianqing Fan;V. Spokoiny
  • 通讯作者:
    V. Spokoiny
Improving Covariate Balancing Propensity Score : A Doubly Robust and Efficient Approach ∗
提高协变量平衡倾向评分:双重稳健和高效的方法*
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqing Fan;K. Imai;Han Liu;Y. Ning;Xiaolin Yang
  • 通讯作者:
    Xiaolin Yang
Features of Big Data and sparsest solution in high confidence set
  • DOI:
    10.1201/b16720-48
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqing Fan
  • 通讯作者:
    Jianqing Fan
Approaches to High-Dimensional Covariance and Precision Matrix Estimations
高维协方差和精度矩阵估计的方法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqing Fan;Yuan Liao;Han Liu
  • 通讯作者:
    Han Liu

Jianqing Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianqing Fan', 18)}}的其他基金

Interface of Statistical Learning and Optimal Decisions
统计学习和最优决策的接口
  • 批准号:
    2210833
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Flexible Network Inference
FRG:协作研究:灵活的网络推理
  • 批准号:
    2052926
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Methods for RNA-seq Based Transcriptomic Analysis of Macrophage Function in Spinal Cord Injury
合作研究:基于RNA-seq的脊髓损伤中巨噬细胞功能转录组学分析的统计方法
  • 批准号:
    1662139
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Robust and Distributed Statistical Learning from Big Data
从大数据中进行稳健的分布式统计学习
  • 批准号:
    1712591
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Interface of Probability and Statistics for High-dimensional Inference
合作研究:高维推理的概率统计接口
  • 批准号:
    1406266
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Statistical Inferences on Massive Data
海量数据统计推断
  • 批准号:
    1206464
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Workshop on: Discovery in Complex or Massive Datasets: Common Statistical Themes
研讨会:复杂或海量数据集中的发现:常见统计主题
  • 批准号:
    0751568
  • 财政年份:
    2007
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of bioinformatic methods for studying gene expression network inflammation and neuronal regeneration
合作研究:开发用于研究基因表达网络炎症和神经元再生的生物信息学方法
  • 批准号:
    0714554
  • 财政年份:
    2007
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
High-dimensional statistical learning and inference
高维统计学习和推理
  • 批准号:
    0704337
  • 财政年份:
    2007
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Workshop on Frontiers of Statistics: Nonparametric Modeling of Complex Data
统计前沿研讨会:复杂数据的非参数建模
  • 批准号:
    0531839
  • 财政年份:
    2006
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMS/NIGMS 1: Simulating cell migration with a multi-scale 3D model fed by intracellular tension sensing measurements
合作研究:DMS/NIGMS 1:使用由细胞内张力传感测量提供的多尺度 3D 模型模拟细胞迁移
  • 批准号:
    2347957
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: DMS/NIGMS 1: Simulating cell migration with a multi-scale 3D model fed by intracellular tension sensing measurements
合作研究:DMS/NIGMS 1:使用由细胞内张力传感测量提供的多尺度 3D 模型模拟细胞迁移
  • 批准号:
    2347956
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
  • 批准号:
    10797460
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Collaborative Research: DMS/NIGMS 2: New statistical methods, theory, and software for microbiome data
合作研究:DMS/NIGMS 2:微生物组数据的新统计方法、理论和软件
  • 批准号:
    10797410
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Collaborative Research: DMS/NIGMS 1: Identifiability investigation of Multi-scale Models of Infectious Diseases
合作研究:DMS/NIGMS 1:传染病多尺度模型的可识别性研究
  • 批准号:
    10794480
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
RUI: Collaborative Research: DMS/NIGMS 1: The mathematical laws of morphology and biomechanics through ontogeny
RUI:合作研究:DMS/NIGMS 1:通过个体发育的形态学和生物力学的数学定律
  • 批准号:
    2152792
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
DMS/NIGMS 1: Collaborative Research: Advanced Ion Channel Modeling and Computational Tools with Application to Voltage-Dependent Anion Channel and Mitochondrial Model Development
DMS/NIGMS 1:合作研究:先进离子通道建模和计算工具,应用于电压依赖性阴离子通道和线粒体模型开发
  • 批准号:
    2153387
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
DMS/NIGMS 1: Collaborative Research: Advanced Ion Channel Modeling and Computational Tools with Application to Voltage-Dependent Anion Channel and Mitochondrial Model Development
DMS/NIGMS 1:合作研究:先进离子通道建模和计算工具,应用于电压依赖性阴离子通道和线粒体模型开发
  • 批准号:
    2153376
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: DMS/NIGMS 1: The mathematical laws of morphology and biomechanics through ontogeny
RUI:合作研究:DMS/NIGMS 1:通过个体发育的形态学和生物力学的数学定律
  • 批准号:
    2152789
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: DMS/NIGMS 1: Mesoscale Kinetic Theory of Early Mitotic Spindle Organization
合作研究:DMS/NIGMS 1:早期有丝分裂纺锤体组织的中尺度动力学理论
  • 批准号:
    2153374
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了