Interface of Statistical Learning and Optimal Decisions

统计学习和最优决策的接口

基本信息

  • 批准号:
    2210833
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Massive datasets are routinely collected in the fields of biological, natural, and social sciences, and engineering and have had a huge impact on statistical analysis, personalized treatments, and decision-making. The driving engines behind these successes are the representation power of deep learning and the dynamic policy optimization framework of Markov decision processes, in addition to the availability of big data. However, training algorithms still take enormous amounts of time and computing power, while statistical and algorithmic efficiencies are also still poorly understood. The aim of this project is to understand and improve statistical methods used in deep learning, reinforcement learning, and big data analysis, with an emphasis on the interfaces between statistical modeling and optimal policy learning. It aims to advance knowledge in AI research, automatic driving and control, e-commerce, molecular mechanisms, biological processes, genetic associations, brain functions, and economic and financial risks. The project will integrate research and education by working closely with undergraduate students, graduate students, and postdoctoral fellows, and develop publicly available computer software with sound theoretical support.The project aims at developing and understanding various new statistical methods used in deep learning, introducing statistical modeling and learning techniques to enhance policy optimization in reinforcement learning, and addressing several important issues in the analysis of big data. The first aim is to provide a theoretical understanding of various techniques used in deep learning. The investigator will study the role of over-parametrization in nonlinear models and low-rank matrix recoveries, understanding minimum norm interpolation and elucidating the interactions between neural network models and the tails of the data distribution. The second aim is to study the interface between statistical modeling and optimal decision. The investigator plans to study contextual dynamic pricing using semiparametric models and structured nonparametric models and to unveil the statistical theory that underpins the success of deep reinforcement learning from an adaptive function approximation point of view using hierarchical composition models. The investigator will also introduce new dimensionality reduction techniques and theories for policy learning to improve both statistical and algorithmic efficiencies. The third aim is to address several stylized issues in big data analytics. These include Markovian dependence, missing data, highly correlated measurements, censored responses, and distributed data, among others.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在生物、自然和社会科学以及工程领域,大量数据集被定期收集,并对统计分析、个性化治疗和决策产生了巨大影响。这些成功背后的驱动引擎是深度学习的表现力和马尔可夫决策过程的动态策略优化框架,以及大数据的可用性。然而,训练算法仍然需要大量的时间和计算能力,而统计和算法效率仍然知之甚少。该项目的目的是了解和改进用于深度学习,强化学习和大数据分析的统计方法,重点是统计建模和最优策略学习之间的接口。它旨在推进人工智能研究,自动驾驶和控制,电子商务,分子机制,生物过程,遗传关联,大脑功能以及经济和金融风险方面的知识。该项目将通过与本科生、研究生和博士后密切合作,将研究与教育结合起来,并开发具有良好理论支持的公开可用的计算机软件。该项目旨在开发和理解用于深度学习的各种新统计方法,引入统计建模和学习技术以增强强化学习的策略优化,并解决了大数据分析中的几个重要问题。第一个目标是提供对深度学习中使用的各种技术的理论理解。研究人员将研究过度参数化在非线性模型和低秩矩阵恢复中的作用,了解最小范数插值并阐明神经网络模型与数据分布尾部之间的相互作用。第二个目标是研究统计建模和最优决策之间的接口。研究人员计划使用半参数模型和结构化非参数模型研究情境动态定价,并使用分层组成模型从自适应函数近似的角度揭示支持深度强化学习成功的统计理论。研究人员还将介绍新的降维技术和政策学习理论,以提高统计和算法效率。第三个目标是解决大数据分析中的几个程式化问题。这一奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Policy Optimization Using Semiparametric Models for Dynamic Pricing
  • DOI:
    10.1080/01621459.2022.2128359
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqing Fan;Yongyi Guo;Mengxin Yu
  • 通讯作者:
    Jianqing Fan;Yongyi Guo;Mengxin Yu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianqing Fan其他文献

Deep Neural Networks for Nonparametric Interaction Models with Diverging Dimension
具有发散维度的非参数交互模型的深度神经网络
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sohom Bhattacharya;Jianqing Fan;Debarghya Mukherjee
  • 通讯作者:
    Debarghya Mukherjee
Dynamic nonparametric filtering with application to volatility estimation
动态非参数滤波及其在波动率估计中的应用
  • DOI:
    10.1016/b978-044451378-6/50021-1
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ming;Jianqing Fan;V. Spokoiny
  • 通讯作者:
    V. Spokoiny
Approaches to High-Dimensional Covariance and Precision Matrix Estimations
高维协方差和精度矩阵估计的方法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqing Fan;Yuan Liao;Han Liu
  • 通讯作者:
    Han Liu
Improving Covariate Balancing Propensity Score : A Doubly Robust and Efficient Approach ∗
提高协变量平衡倾向评分:双重稳健和高效的方法*
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqing Fan;K. Imai;Han Liu;Y. Ning;Xiaolin Yang
  • 通讯作者:
    Xiaolin Yang
Features of Big Data and sparsest solution in high confidence set
  • DOI:
    10.1201/b16720-48
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqing Fan
  • 通讯作者:
    Jianqing Fan

Jianqing Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianqing Fan', 18)}}的其他基金

DMS/NIGMS 2: Collaborative Research: Developing Statistical Learning Methods for Revealing the Molecular Signatures of Microvascular Changes in Neural Injury
DMS/NIGMS 2:合作研究:开发统计学习方法来揭示神经损伤中微血管变化的分子特征
  • 批准号:
    2053832
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Flexible Network Inference
FRG:协作研究:灵活的网络推理
  • 批准号:
    2052926
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Methods for RNA-seq Based Transcriptomic Analysis of Macrophage Function in Spinal Cord Injury
合作研究:基于RNA-seq的脊髓损伤中巨噬细胞功能转录组学分析的统计方法
  • 批准号:
    1662139
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Robust and Distributed Statistical Learning from Big Data
从大数据中进行稳健的分布式统计学习
  • 批准号:
    1712591
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: Interface of Probability and Statistics for High-dimensional Inference
合作研究:高维推理的概率统计接口
  • 批准号:
    1406266
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Statistical Inferences on Massive Data
海量数据统计推断
  • 批准号:
    1206464
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Workshop on: Discovery in Complex or Massive Datasets: Common Statistical Themes
研讨会:复杂或海量数据集中的发现:常见统计主题
  • 批准号:
    0751568
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of bioinformatic methods for studying gene expression network inflammation and neuronal regeneration
合作研究:开发用于研究基因表达网络炎症和神经元再生的生物信息学方法
  • 批准号:
    0714554
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
High-dimensional statistical learning and inference
高维统计学习和推理
  • 批准号:
    0704337
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Workshop on Frontiers of Statistics: Nonparametric Modeling of Complex Data
统计前沿研讨会:复杂数据的非参数建模
  • 批准号:
    0531839
  • 财政年份:
    2006
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging
智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究
  • 批准号:
    2342215
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
  • 批准号:
    2340241
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
  • 批准号:
    495410
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886365
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886852
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
  • 批准号:
    2334261
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
  • 批准号:
    2244160
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
  • 批准号:
    10714930
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Doctoral Dissertation Research: The Effects of Language Experience on Statistical Learning in Infants and Adults
博士论文研究:语言体验对婴儿和成人统计学习的影响
  • 批准号:
    2234422
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了