Certain Algebraic Varieties Related to Finite and Affine Flag Varieties

与有限和仿射旗簇相关的某些代数簇

基本信息

  • 批准号:
    0400679
  • 负责人:
  • 金额:
    $ 10.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

Flag varieties form an important class of varieties in AlgebraicGeometry. Schubert varieties form an important class of subvarieties insideflag varieties. The principal investigator developed a ``Standard MonomialTheory" (henceforth abbreviated SMT) in collaboration with Musili andSeshadri for flag varieties and their Schubert varieties. This theory hasled to very many important geometric & representation-theoreticconsequences. The principal investigator's recent research shows that oncethere is a good SMT for an algebraic variety, much information could beinferred about the variety (using SMT); for instance, SMT throws light onthe degenerations of the variety. The degenerations of a variety in turnfacilitate the understanding of the geometric aspects of the variety. Thistechnique has been used very recently in the area of Complexity Theory inComputer Science, esp., in the context of the ``P not equal toNP-conjecture". There is yet another interesting and important class ofalgebraic varieties related to Flag varieties, namely, the class of orbitclosures for the Adjoint action of a semi-simple algebraic group on thevariety of nilpotent elements in its Lie algebra. While there are very manyinteresting algebraic varieties - the determinantal varieties, Ladderdeterminantal varieties, quiver varieties - which get identified in anatural way with certain open subsets in Schubert varieties, theabove-mentioned orbit closures (and more generally orbit closures arisingfrom cyclic quivers) get identified in a natural way with certain opensubsets in affine Schubert varieties, i.e., Schubert varieties in thegeneralized flag variety associated to a Kac-Moody algebra. The researchproject considered in this proposal aims at developing a SMT for theabove-mentioned orbit closures via the fore-said relationship with Schubertvarieties ; it also aims at developing a SMT for other interesting classesof varieties - large Schubert varieties, Spherical varieties etc., as wellas determining in an explicit way the multiplicative structure of theequivariant Grothendieck ring and the equivariant cohomology ring of flagvarieties.Modern Algebraic Geometry (developed in the later half of the 20-th century)has proved itself (beyond any doubts) to be indispensable in variousdisciplines within Mathematics as well as in other areas outsideMathematics:Examples: Topology, Representation Theory, Combinatorics (withinMathematics).The modern Quantum Theory (especially Quantum & Conformal field theories) inPhysics.Robotics, Complexity Theory, Computer vision in Computer Science.This proposal is at the cross-roads of Commutative Algebra, AlgebraicGeometry, Combinatorics & Representation-theory. The varieties studied inthis proposal form an important class of varieties in Algebraic Geometry;for example, the theory of Schubert varieties (over finite fields) isclosely linked to Coding theory. The principal investigator believes thatthis proposal is bound to have significant impacts on the above-mentioneddisciplines.
旗簇是代数几何中一类重要的簇。舒伯特变种是变种内部的一类重要的亚变种。主要研究者与Musili和Seshadri合作开发了一个“标准单体理论”(以下简称SMT),用于旗品种和舒伯特品种。这一理论导致了许多重要的几何表示理论的结果。 首席研究员最近的研究表明,一旦有一个很好的SMT的代数品种,许多信息可以推断品种(使用SMT),例如,SMT抛出光的退化品种。一个变种的退化反过来又促进了对该变种几何方面的理解。这种技术最近被用于计算机科学中的复杂性理论领域,特别是,在“P不等于NP-猜想”的背景下。还有另一类有趣而重要的代数簇与Flag簇有关,即半单代数群在其李代数中幂零元簇上的伴随作用的轨道闭包类。虽然有很多有趣的代数簇-行列式簇,梯形行列式簇,梯形簇-以自然的方式与舒伯特簇中的某些开子集相识别,但上述轨道闭包(以及更一般地,来自循环箭图的轨道闭包)以自然的方式与仿射舒伯特簇中的某些开子集相识别,即,Kac-Moody代数的广义旗簇中的Schubert簇。本提案中考虑的研究项目旨在通过上述与舒伯特品种的关系为上述轨道闭合开发一个SMT;它还旨在为其他感兴趣的品种类别开发一个SMT-大舒伯特品种,球形品种等,并明确地确定了旗簇的等变Grothendieck环和等变上同调环的乘法结构。现代代数几何(发展于世纪后半期)已经证明了自己(毫无疑问)是不可或缺的各种学科内的数学以及在其他领域以外的数学:例如:拓扑学,表示论,组合学(数学内)。物理学中的现代量子理论(特别是量子共形场论)。计算机科学中的机器人学,复杂性理论,计算机视觉。这个建议是在交换代数的十字路口&,代数几何,组合数学&表示论。在这个建议中研究的品种形成了代数几何中一类重要的品种;例如,舒伯特品种理论(在有限域上)与编码理论密切相关。 主要研究者认为,这一建议必将对上述学科产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Venkatramani Lakshmibai其他文献

Toroidal Schubert Varieties
  • DOI:
    10.1007/s10468-019-09921-4
  • 发表时间:
    2019-08-24
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Mahir Bilen Can;Reuven Hodges;Venkatramani Lakshmibai
  • 通讯作者:
    Venkatramani Lakshmibai

Venkatramani Lakshmibai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Venkatramani Lakshmibai', 18)}}的其他基金

Varieties with group actions
具有集体行动的品种
  • 批准号:
    0652386
  • 财政年份:
    2007
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing Grant
Some Algebraic Varieties Related to Flag Varieties
一些与标志簇有关的代数簇
  • 批准号:
    9971295
  • 财政年份:
    1999
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Algebraic Groups - Combinatorial, Geometric and Representation - Theoretic Aspects
数学科学:代数群 - 组合、几何和表示 - 理论方面
  • 批准号:
    9502942
  • 财政年份:
    1995
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Flag and Schubert Schemes - Classical, Generalized and Quantum
数学科学:Flag 和 Schubert 方案 - 经典、广义和量子
  • 批准号:
    9103129
  • 财政年份:
    1991
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing grant
Algebraic Groups and Applications, International Conference,Hyderabad, India, December 8-18, 1989, Group Travel Award inIndian and U.S. Currencies
代数群和应用,国际会议,印度海得拉巴,1989 年 12 月 8 日至 18 日,印度和美国货币团体旅行奖
  • 批准号:
    8906744
  • 财政年份:
    1989
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Schubert Varieties and Standard Monomial Theory
数学科学:舒伯特簇和标准单项式理论
  • 批准号:
    8701043
  • 财政年份:
    1987
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Standard Monomial Theory and Related Problems
数学科学:标准单项式理论及相关问题
  • 批准号:
    8501133
  • 财政年份:
    1985
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
  • 批准号:
    2234736
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing Grant
Geometry of analytic and algebraic varieties
解析几何和代数簇
  • 批准号:
    2301374
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
Conference: Algebraic and topological interplay of algebraic varieties
会议:代数簇的代数和拓扑相互作用
  • 批准号:
    2304894
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
Cohomology theories for algebraic varieties
代数簇的上同调理论
  • 批准号:
    2883661
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Studentship
Homotopy theoretic study of algebraic varieties with modulus
带模代数簇的同伦理论研究
  • 批准号:
    22KJ1016
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Studies on canonical bundles of algebraic varieties
代数簇的正则丛研究
  • 批准号:
    23H01064
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The study of algebraic varieties related to Calabi-Yau varieties in positive characteristic
与Calabi-Yau簇相关的正特征代数簇研究
  • 批准号:
    23K03066
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RTG: Arithmetic, Combinatorics, and Topology of Algebraic Varieties
RTG:代数簇的算术、组合学和拓扑
  • 批准号:
    2231565
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing Grant
Research on singularities of algebraic varieties
代数簇的奇异性研究
  • 批准号:
    22K03224
  • 财政年份:
    2022
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Projective geometry in arbitrary characteristic and its application to fundamental algebraic varieties
任意特征的射影几何及其在基本代数簇中的应用
  • 批准号:
    22K03236
  • 财政年份:
    2022
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了