Algebraic Groups and Applications, International Conference,Hyderabad, India, December 8-18, 1989, Group Travel Award inIndian and U.S. Currencies
代数群和应用,国际会议,印度海得拉巴,1989 年 12 月 8 日至 18 日,印度和美国货币团体旅行奖
基本信息
- 批准号:8906744
- 负责人:
- 金额:$ 3.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-07-01 至 1990-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Description: This project supports travel of twelve U. S. scientists to an international conference on " Algebraic Groups and Applications" to be held at the University of Hyderabad, India. Topics to be covered include: 1. Finite dimensional group; 2. Infinite dimensional groups and 3. General surveys. The conference will be for 10 days with 6 lectures per day. Participants are expected from the U. S., the U. K., France, U.S.S.R., Japan, the Netherlands, Switzerland and from Italy in addition to Indian lecturers and graduate students. The lectures are expected to be published as a book or as a special volume of a journal. Scope: The conference has two main objectives: to present state of the art in the area of algerbraic groups to young scientist and students in India, and to to provide a forum for exchange of information and ideas between Indian, U. S. and other scientists; and to consider areas for further research to be done jointly or independently. These objectives are expected to be met through the well planned conference and the excellent selection of participants. The meeting is expected to increase U.S.-Indian collaboration in the field of mathematics.
描述:该项目支持12名美国科学家参加在印度海得拉巴大学举行的“代数组和应用”国际会议。将涵盖的主题包括:1.有限维群;2.无限维群;3.一般概述。会议为期10天,每天6场讲座。预计与会者将来自美国、英国、法国、苏联、日本、荷兰、瑞士和意大利,此外还有印度的讲师和研究生。这些讲座预计将以书籍或期刊专册的形式出版。会议范围:会议有两个主要目标:向印度的年轻科学家和学生展示算法群体领域的最新技术,并为印度、美国和其他科学家之间的信息和思想交流提供一个论坛;以及考虑需要联合或独立进行进一步研究的领域。这些目标预计将通过精心策划的会议和出色挑选的与会者来实现。预计此次会议将加强美印在数学领域的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Venkatramani Lakshmibai其他文献
Toroidal Schubert Varieties
- DOI:
10.1007/s10468-019-09921-4 - 发表时间:
2019-08-24 - 期刊:
- 影响因子:0.600
- 作者:
Mahir Bilen Can;Reuven Hodges;Venkatramani Lakshmibai - 通讯作者:
Venkatramani Lakshmibai
Venkatramani Lakshmibai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Venkatramani Lakshmibai', 18)}}的其他基金
Certain Algebraic Varieties Related to Finite and Affine Flag Varieties
与有限和仿射旗簇相关的某些代数簇
- 批准号:
0400679 - 财政年份:2004
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Some Algebraic Varieties Related to Flag Varieties
一些与标志簇有关的代数簇
- 批准号:
9971295 - 财政年份:1999
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic Groups - Combinatorial, Geometric and Representation - Theoretic Aspects
数学科学:代数群 - 组合、几何和表示 - 理论方面
- 批准号:
9502942 - 财政年份:1995
- 资助金额:
$ 3.3万 - 项目类别:
Continuing grant
Mathematical Sciences: Flag and Schubert Schemes - Classical, Generalized and Quantum
数学科学:Flag 和 Schubert 方案 - 经典、广义和量子
- 批准号:
9103129 - 财政年份:1991
- 资助金额:
$ 3.3万 - 项目类别:
Continuing grant
Mathematical Sciences: Schubert Varieties and Standard Monomial Theory
数学科学:舒伯特簇和标准单项式理论
- 批准号:
8701043 - 财政年份:1987
- 资助金额:
$ 3.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Standard Monomial Theory and Related Problems
数学科学:标准单项式理论及相关问题
- 批准号:
8501133 - 财政年份:1985
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
相似海外基金
Cohomology and Representations of Finite and Algebraic Groups with Applications
有限代数群的上同调和表示及其应用
- 批准号:
1901595 - 财政年份:2019
- 资助金额:
$ 3.3万 - 项目类别:
Continuing Grant
Study on the structures and representations of infinite dimensional algebraic groups and Lie algebras, and applications to quasiperiodic structures
无限维代数群和李代数的结构和表示的研究,以及在准周期结构中的应用
- 批准号:
26400005 - 财政年份:2014
- 资助金额:
$ 3.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hermite constants of algebraic groups and their applications
代数群的埃尔米特常数及其应用
- 批准号:
19540026 - 财政年份:2007
- 资助金额:
$ 3.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of infinite dimensional algebraic groups and Lie algebras, and applications to material science and life science
无限维代数群和李代数的研究及其在材料科学和生命科学中的应用
- 批准号:
19540006 - 财政年份:2007
- 资助金额:
$ 3.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on ideal class groups of algebraic number fields and number theoretic functions and its applications
代数数域和数论函数的理想类群研究及其应用
- 批准号:
16540007 - 财政年份:2004
- 资助金额:
$ 3.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of arithmetic theory of algebraic groups to computational number theory
代数群算术理论在计算数论中的应用
- 批准号:
16540014 - 财政年份:2004
- 资助金额:
$ 3.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A research on algebraic groups and Kac-Moody groups, and their applications
代数群和Kac-Moody群的研究及其应用
- 批准号:
15540005 - 财政年份:2003
- 资助金额:
$ 3.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homology of Linear Groups with Applications to Algebraic K-theory
线性群的同调及其在代数 K 理论中的应用
- 批准号:
0242906 - 财政年份:2002
- 资助金额:
$ 3.3万 - 项目类别:
Continuing Grant
Study on representations of algebraic groups and finite groups, and applications
代数群和有限群的表示研究及应用
- 批准号:
12640040 - 财政年份:2000
- 资助金额:
$ 3.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homology of Linear Groups with Applications to Algebraic K-theory
线性群的同调及其在代数 K 理论中的应用
- 批准号:
0070119 - 财政年份:2000
- 资助金额:
$ 3.3万 - 项目类别:
Continuing Grant














{{item.name}}会员




