Anabelian Geometry and Elementary Equivalence of Fields
阿纳贝尔几何和域的初等等价
基本信息
- 批准号:0401056
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT for Award DMS-0401056 of PopThe present research project concerns modern Galois Theory,more specifically birational Anabelian Geometry. The mainproblem I will be investigating is trying to recover thebirational class of a variety (over an algebraically closedbase field) from the pro-l Galois theory of its function field.Related to this, there are several other questions, like theone by Ihara/Oda-Matsumoto concerning a geometric/combinatoricdescription of the Galois group of the field of rational numbers.The above question is also related to describing rational pointsof varieties via the so called Section Conjecture. This kind ofquestions were initiated -in the arithmetic situation- in someremarkable (unpublished) manuscripts by Grothendieck. But itappears that in higher dimensions, one has such "anabelianphenomena" even in the total absence of arithmetic, i.e., overan algebraically closed base field.The Galois Theory makes a bridge between two very differentmathematical aspects, namely some basic algebraic objects, likefields, or more general spaces (varieties) on the one side,and the way one solves algebraic equations, or constructscovers of the spaces in discussion, on the other side. Now the(birational) Anabelian Geometry asserts that in the case the fieldone works over is "primitive enough", respectively the geometryof the space one constructs covers of, is "complicated enough", thetotality of the "recipes" of solving all the algebraic equations,respectively of constructing all the covers, encodes the field,respectively the space under discussion. This opens a completelynew perspective in approaching some very fundamental mathematicalquestions. The present research project addresses some of the basicproblems in this mathematical field of research.
目前的研究项目涉及现代伽罗瓦理论,更具体地说,是双国安娜贝尔几何。我将研究的主要问题是试图从其函数场的亲伽罗瓦理论中恢复一个品种(在代数封闭基场上)的国家类。与此相关,还有其他几个问题,比如Ihara/Oda-Matsumoto关于有理数领域伽罗瓦群的几何/组合描述的问题。上述问题也与通过所谓的截面猜想来描述变种的有理点有关。这类问题是由格罗滕迪克(Grothendieck)在一些引人注目的(未发表的)手稿中提出的。但是,在更高的维度中,即使完全没有算术,也会出现这样的“易变现象”,即在代数封闭的基域上。伽罗瓦理论在两个非常不同的数学方面之间架起了一座桥梁,即一方面是一些基本的代数对象,如场,或更一般的空间(变种),另一方面是解决代数方程或构建讨论中的空间覆盖的方式。现在,(双分)安娜贝尔几何断言,如果所处理的域是“足够原始的”,那么所构造覆盖的空间的几何是“足够复杂的”,那么解决所有代数方程的“方法”的总和,分别是构造所有覆盖的“方法”,分别编码了所讨论的域和空间。这为解决一些非常基本的数学问题开辟了一个全新的视角。目前的研究项目涉及这一数学研究领域的一些基本问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Florian Pop其他文献
On prosolvable subgroups of profinite free products and some applications
- DOI:
10.1007/bf02567982 - 发表时间:
1995-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Florian Pop - 通讯作者:
Florian Pop
Galoissche Kennzeichnung p-adisch abgeschlossener Körper.
Galoissche Kennzeichnung p-adisch abgeschlossener Körper。
- DOI:
10.1515/crll.1988.392.145 - 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
Florian Pop - 通讯作者:
Florian Pop
On the Pythagoras number of function fields of curves over number fields
- DOI:
10.1007/s11856-023-2548-y - 发表时间:
2023-12-22 - 期刊:
- 影响因子:0.800
- 作者:
Florian Pop - 通讯作者:
Florian Pop
Elementary equivalence versus isomorphism
- DOI:
10.1007/s00222-002-0238-7 - 发表时间:
2002-11-01 - 期刊:
- 影响因子:3.600
- 作者:
Florian Pop - 通讯作者:
Florian Pop
Inertia elements versus Frobenius elements
- DOI:
10.1007/s00208-010-0507-5 - 发表时间:
2010-03-27 - 期刊:
- 影响因子:1.400
- 作者:
Florian Pop - 通讯作者:
Florian Pop
Florian Pop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Florian Pop', 18)}}的其他基金
FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
- 批准号:
2152304 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Anabelian Geometry and Field Arithmetic II
阿纳贝尔几何与域算术 II
- 批准号:
1101397 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Travel Funding for Workshop at RIMS Kyoto
RIMS 京都研讨会旅行资助
- 批准号:
1044746 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Anabelian Geometry and Field Arithmetic
阿纳贝尔几何和场算术
- 批准号:
0801144 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Research on an education support system for elementary geometry based on handwriting behavior
基于手写行为的初等几何教育支持系统研究
- 批准号:
21K12157 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The collaborative research on the development of class lessons and curriculum coherent from elementary to secondary mathematics in terms of the linkage between plane and spatial geometry
平面与空间几何之间联系的小学至中学数学课堂课程和课程开发的协作研究
- 批准号:
20H01745 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Practical Study on the Development of Teaching Materials of Meaningful "Mathematical Activity" for Geometry Education in Elementary School.
小学几何教育有意义的“数学活动”教材开发的实践研究。
- 批准号:
21730694 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Dynamic Haptic Geometry in Elementary and Undergraduate Classrooms
小学和本科课堂中的动态触觉几何
- 批准号:
0835395 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
A study of the connection of teaching geometry between elementary school and lower secondary school
小学与初中几何教学衔接研究
- 批准号:
17500575 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-commutative geometry and the interaction of elementary particles
非交换几何和基本粒子的相互作用
- 批准号:
5371445 - 财政年份:2002
- 资助金额:
$ 15万 - 项目类别:
Research Grants
Mass production of Theorems of Elementary Geometry and its Application
初等几何定理的量产及其应用
- 批准号:
12680184 - 财政年份:2000
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Technology-Enhanced Learning of Geometry in Elementary Schools
技术增强小学几何学习
- 批准号:
9903409 - 财政年份:1999
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Experiencing Geometry: Enhancing Prospective Elementary and Middle School Teacher
体验几何:提升未来中小学教师水平
- 批准号:
9851237 - 财政年份:1998
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Advanced Mathematics from an Elementary Viewpoint: Chaos, Fractal Geometry, and Nonlinear Systems
从初级角度看高等数学:混沌、分形几何和非线性系统
- 批准号:
8850394 - 财政年份:1988
- 资助金额:
$ 15万 - 项目类别:
Continuing grant