Anabelian Geometry and Field Arithmetic II
阿纳贝尔几何与域算术 II
基本信息
- 批准号:1101397
- 负责人:
- 金额:$ 26.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns the study of anabelian phenomena in arithmetic and algebraic geometry as well as questions in field arithmetic. The PI plans to continue his work on an anabelian program initiated by Bogomolov, which aims at recovering function fields of transcendence degree at least two from their pro-l abelian-by-central Galois theory in a functorial way. The PI completed that program for function fields over algebraic closures of finite fields, and he plans to complete that program for function fields over algebraic closures of global fields and more general algebraically closed base fields. The PI plans to exploit the relation of the anabelian program under discussion with the Ihara/Oda-Matsumoto conjecture, and to use these methods to give generalizations in several directions of the Ihara/Oda-Matsumoto conjecture; in particular, to prove this conjecture for arbitrary base fields. This would have a major impact on understanding the Galois structure of the field of rational numbers in particular, and of arbitrary fields in general. The PI (jointly with collaborators) expects as well to make progress on Grothendieck's (p-adic) section conjecture and its relation to (an effective) Mordell conjecture --Faltings' Theorem. Finally, the PI expects to make progress on better understanding how localization processes --in particular, which such processes-- lead to large fields. In particular, to gain a better understanding of how localization processes relate via local-global principles to large fields and the Freeness Conjecture. The PI plans to simplify and prove stronger results concerning the solvability of non-trivial split embedding problems over large fields in classical Galois, as well as differential Galois, theoretical context, both by developing new tools and by using results of general type proved previously and used successfully in other context.Positive answers to the questions mentioned above would have a significant impact on the progress of modern Galois theory and on some of the very fundamental questions in arithmetic geometry and algebraic geometry. The results will be widely disseminated to the mathematical community via talks and publications in scientific journals. The PI is co-organizer of, and senior invited researcher at, activities which aim to do both: first, to create a broad basis for international cooperation, training, and scientific exchange at all levels; and second, to have special activities for graduate students and young researchers, thus enhancing teaching and technological understanding.
该研究项目涉及算术和代数几何中的阿贝尔现象以及域算术中的问题的研究。 PI 计划继续开展由博戈莫洛夫发起的阿贝尔计划,该计划旨在以函子的方式从他们的亲拉贝尔中央伽罗瓦理论中恢复至少两个超越度的函数域。 PI 完成了有限域代数闭包上的函数域的程序,他计划完成全局域的代数闭包上的函数域和更一般的代数闭基域的程序。 PI 计划利用正在讨论的阿纳贝尔纲领与 Ihara/Oda-Matsumoto 猜想的关系,并使用这些方法在 Ihara/Oda-Matsumoto 猜想的几个方向上进行推广;特别是,为了证明任意基域的这个猜想。这将对理解特别是有理数域以及一般任意域的伽罗瓦结构产生重大影响。 PI(与合作者共同)也期望在格洛腾迪克(p-adic)截面猜想及其与(有效的)莫德尔猜想——法尔廷斯定理的关系方面取得进展。最后,PI 希望在更好地理解本地化过程(特别是哪些过程)如何导致大型字段方面取得进展。特别是,为了更好地理解本地化过程如何通过局部-全局原则与大领域和自由度猜想相关联。 PI 计划通过开发新工具以及使用先前证明并在其他环境中成功使用的一般类型结果,简化并证明关于经典伽罗瓦以及微分伽罗瓦理论背景下大域上非平凡分裂嵌入问题的可解性的更强结果。对上述问题的肯定答案将对现代伽罗瓦理论的进展以及算术中的一些非常基本的问题产生重大影响 几何和代数几何。研究结果将通过讲座和科学期刊上的出版物广泛传播到数学界。首席研究员是活动的联合组织者和高级受邀研究员,其目的是:第一,为各级国际合作、培训和科学交流创造广泛的基础;二是针对研究生和青年研究人员开展专题活动,从而增强教学和技术理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Florian Pop其他文献
On prosolvable subgroups of profinite free products and some applications
- DOI:
10.1007/bf02567982 - 发表时间:
1995-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Florian Pop - 通讯作者:
Florian Pop
Galoissche Kennzeichnung p-adisch abgeschlossener Körper.
Galoissche Kennzeichnung p-adisch abgeschlossener Körper。
- DOI:
10.1515/crll.1988.392.145 - 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
Florian Pop - 通讯作者:
Florian Pop
On the Pythagoras number of function fields of curves over number fields
- DOI:
10.1007/s11856-023-2548-y - 发表时间:
2023-12-22 - 期刊:
- 影响因子:0.800
- 作者:
Florian Pop - 通讯作者:
Florian Pop
Elementary equivalence versus isomorphism
- DOI:
10.1007/s00222-002-0238-7 - 发表时间:
2002-11-01 - 期刊:
- 影响因子:3.600
- 作者:
Florian Pop - 通讯作者:
Florian Pop
Inertia elements versus Frobenius elements
- DOI:
10.1007/s00208-010-0507-5 - 发表时间:
2010-03-27 - 期刊:
- 影响因子:1.400
- 作者:
Florian Pop - 通讯作者:
Florian Pop
Florian Pop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Florian Pop', 18)}}的其他基金
FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
- 批准号:
2152304 - 财政年份:2022
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Travel Funding for Workshop at RIMS Kyoto
RIMS 京都研讨会旅行资助
- 批准号:
1044746 - 财政年份:2010
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Anabelian Geometry and Field Arithmetic
阿纳贝尔几何和场算术
- 批准号:
0801144 - 财政年份:2008
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
Anabelian Geometry and Elementary Equivalence of Fields
阿纳贝尔几何和域的初等等价
- 批准号:
0401056 - 财政年份:2004
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
- 批准号:
2310588 - 财政年份:2023
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Phase Space Geometry of Critical Transitions in Collective Behavior Modeled by Mean Field Type Control Problems
平均场类型控制问题建模的集体行为关键转变的相空间几何
- 批准号:
2102112 - 财政年份:2021
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
CAREER: Liouville Quantum Gravity, Two-Dimensional Random Geometry, and Conformal Field Theory
职业:刘维尔量子引力、二维随机几何和共形场论
- 批准号:
2046514 - 财政年份:2021
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
- 批准号:
2014086 - 财政年份:2020
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Enumerative Geometry of Hitchin Systems and Topological Quantum Field Theory
希钦系统的枚举几何与拓扑量子场论
- 批准号:
2041740 - 财政年份:2020
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Conforma Field Theory and Stringy Geometry
保形场论和弦几何
- 批准号:
1914505 - 财政年份:2019
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
Interdisciplinary research of arithmetic geometry and quantum field theory related to the moduli space of hyperbolic curves
双曲曲线模空间相关的算术几何与量子场论的跨学科研究
- 批准号:
18K13385 - 财政年份:2018
- 资助金额:
$ 26.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Enumerative Geometry of Hitchin Systems and Topological Quantum Field Theory
希钦系统的枚举几何与拓扑量子场论
- 批准号:
1802082 - 财政年份:2018
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Collaborative Research: Derived Differential Geometry and Field Theory
合作研究:派生微分几何和场论
- 批准号:
1812049 - 财政年份:2018
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant