Cluster Analysis, Predictive Distributions, and Stochastic Search Algorithms
聚类分析、预测分布和随机搜索算法
基本信息
- 批准号:0405543
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-06-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cluster analysis is a widely used exploratory tool for finding patterns in data. The basic goal of a cluster analysis is to separate m distinguishable objects (based on measurements associated with them) into groups, or clusters, such that the objects within each group are "similar" while the groups themselves are "different." The number of possible partitions of m objects grows extremely quickly with m, and consequently it is impossible to perform an exhaustive search for the best partition. Most standard methods such as hierarchical and K-means clustering: (a) sacrifice an extensive search of all possible partitions for speed of implementation; (b) fail to (globally) optimize an objective function; and generally return a single answer, even though there may be many equally good answers that are all relevant to the application. This investigation will look at: (i) The improvement attainable in the performance of clustering algorithms using data smoothing; (ii) A model-based approach to simultaneously smooth the data while providing a natural objective function for ranking partitions; and (iii) Strategies for conducting a stochastic search with high speed computing and Markov chain Monte Carlo algorithms. The proposed methodology has already been successfully applied in some examples.Cluster analysis has seen renewed interest of late due, in part, due to its applications in bioinformatics, where it can be used with microarray analysis to identify groups of genes that can be linked to certain diseases. For example, it could be the case that the presence or absence of certain genes could predispose a person to certain types of cancers, or to indicate greater post-operative risk from certain procedures. Therefore, the benefits to society of the proposed project include the advances from the better understanding of these relationships that these improved algorithms will yield, and the clearer picture provided of the links between genes and diseases. Graduate students will also be trained to develop these methods further. Other researchers, trained in these new methods, will find their own investigations enhanced.
聚类分析是一种广泛使用的探索性工具,用于发现数据中的模式。聚类分析的基本目标是将m个可区分的对象(基于与它们相关联的测量)分成组或聚类,使得每个组内的对象是“相似的”,而组本身是“不同的”。“m个对象的可能分区的数量随着m的增长而增长得非常快,因此不可能对最佳分区进行穷举搜索。 大多数标准方法,如分层和K均值聚类:(a)为了实现速度而牺牲对所有可能分区的广泛搜索;(B)无法(全局)优化目标函数;并且通常返回单个答案,即使可能存在许多与应用程序相关的同样好的答案。 这项调查将着眼于:(一)聚类算法使用数据平滑的性能可达到的改进;(二)一个基于模型的方法,同时平滑的数据,同时提供一个自然的目标函数的排名分区;和(iii)进行随机搜索的策略与高速计算和马尔可夫链蒙特卡罗算法。所提出的方法已经成功地应用在一些例子中。聚类分析最近重新引起了人们的兴趣,部分原因是它在生物信息学中的应用,在生物信息学中,它可以与微阵列分析一起用于识别与某些疾病相关的基因组。 例如,某些基因的存在或缺乏可能使人易患某些类型的癌症,或表明某些手术的术后风险更大。 因此,拟议项目对社会的好处包括更好地理解这些关系,这些改进的算法将产生的进步,以及基因和疾病之间联系的更清晰的画面。 研究生也将接受培训,以进一步发展这些方法。 其他研究人员,在这些新方法的培训,将发现自己的调查增强。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Casella其他文献
Relationships Between Post-Data Accuracy Measures
- DOI:
10.1023/a:1003270426974 - 发表时间:
1997-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Constantinos Goutis;George Casella - 通讯作者:
George Casella
Objective Bayesian Analysis of Multiple Changepoints for Linear Models
线性模型多个变点的客观贝叶斯分析
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
J. M. Bernardo;M. J. Bayarri;J. O. Berger;A. Dawid;D. Heckerman;A. F. M. Smith;M. West;F. J. Girón;Elías Moreno;George Casella - 通讯作者:
George Casella
A hierarchical statistical model for estimating population properties of quantitative genes
- DOI:
10.1186/1471-2156-3-36 - 发表时间:
2002-06-12 - 期刊:
- 影响因子:2.500
- 作者:
Samuel S Wu;Chang-Xing Ma;Rongling Wu;George Casella - 通讯作者:
George Casella
Convergence of posterior odds
后验赔率的收敛
- DOI:
10.1016/s0378-3758(95)00198-0 - 发表时间:
1996 - 期刊:
- 影响因子:0.9
- 作者:
Richard A. Levine;George Casella - 通讯作者:
George Casella
Perfect samplers for mixtures of distributions
适用于分布混合的完美采样器
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
George Casella;Kerrie Mengersen;Christian P. Robert;D. M. Titterington - 通讯作者:
D. M. Titterington
George Casella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Casella', 18)}}的其他基金
Collaborative Research: Adaptive Nonparametric Markov Chain Monte Carlo Algorithms for Social Data Models with Nonparametric Priors
协作研究:具有非参数先验的社会数据模型的自适应非参数马尔可夫链蒙特卡罗算法
- 批准号:
0631588 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Statistical Models for Studying the Genetic Architecture of Dynamic Traits
研究动态性状遗传结构的统计模型
- 批准号:
0540745 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing grant
NSF Conference in the Mathematical Sciences on Data Mining and Bioinformatics; January 8-10, 2004; Gainesville, FL
NSF 数据挖掘和生物信息学数学科学会议;
- 批准号:
0337163 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
NSF Conference in the Mathematical Sciences on Functional Data Analysis
NSF 函数数据分析数学科学会议
- 批准号:
0229028 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Algorithms, Approximations, and Valid Statistical Inference
算法、近似值和有效的统计推断
- 批准号:
0196353 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
Algorithms, Approximations, and Valid Statistical Inference
算法、近似值和有效的统计推断
- 批准号:
9971586 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Implementation of Accurate Methods for Practical Inference
数学科学:实际推理的准确方法的实现
- 批准号:
9625440 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Construction and Evaluation of Accuracy Estimators
美法合作研究:精度估计器的构建和评估
- 批准号:
9216784 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Assessing Robustness of Inference
数学科学:评估推理的稳健性
- 批准号:
9305547 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Estimation of Accuracy of Hypothesis Test and Confidence Sets
数学科学:假设检验和置信集准确性的估计
- 批准号:
9100839 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Topological Analysis for Predictive Spatial Signatures of Cancer progression and Treatment Response
癌症进展和治疗反应的预测空间特征的拓扑分析
- 批准号:
2882735 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Creation of predictive biomarkers by comprehensive analysis of vernix caseosa for prevention of neonatal skin problems.
通过全面分析干酪皮脂创建预测生物标志物,用于预防新生儿皮肤问题。
- 批准号:
23K18393 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Next generation predictive maintenance for wind turbine blade/hub/rotor through novel online condition monitoring/root cause analysis: MONTURWIND
通过新颖的在线状态监测/根本原因分析对风力涡轮机叶片/轮毂/转子进行下一代预测性维护:MONTUWIND
- 批准号:
10041137 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
STTR Phase I: Portable single cell cytology and predictive analysis platform for the early detection of epithelial cancers
STTR 第一期:用于上皮癌早期检测的便携式单细胞细胞学和预测分析平台
- 批准号:
2233372 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Project 1: Systemic analysis of the origin and tissue effects of the 68-1 RhCMV/SIV vaccine efficacy-predictive whole blood transcriptomic signature
项目1:68-1 RhCMV/SIV疫苗功效预测全血转录组特征的起源和组织效应的系统分析
- 批准号:
10723639 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Predictive value of Parkinson's Disease gait model-derived features for disease severity and progression estimation: An individual patient data meta-analysis.
帕金森病步态模型衍生特征对疾病严重程度和进展估计的预测价值:个体患者数据荟萃分析。
- 批准号:
495240 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Predictive Data Analysis of Air Quality to Reduce Health Risks
空气质量预测数据分析以降低健康风险
- 批准号:
2774639 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
- 批准号:
RGPIN-2018-04462 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Spatiotemporal and Deep Learning Analysis of Cardiac Imaging for Predictive Risk Stratification in Duchenne Muscular Dystrophy
心脏成像的时空和深度学习分析用于杜氏肌营养不良症的预测风险分层
- 批准号:
10536912 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
- 批准号:
2326940 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant