Mathematical Sciences: Implementation of Accurate Methods for Practical Inference
数学科学:实际推理的准确方法的实现
基本信息
- 批准号:9625440
- 负责人:
- 金额:$ 33.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS 9625440 Casella Although much research effort has been expended on developing accurate approximation techniques such as saddlepoint and improved likelihood-based procedures, less effort has been devoted to assessing the types of inferences that can be achieved in practice by using these methods. When this assessment is made, it is seen that the available inferences are severely limited in scope by both statistical issues and computational complexity. These two sources of limitation are intertwined, as computational difficulties can arise from the inherent demands of valid frequentist procedures. Ensuring the correctness of frequentist inferences can be computationally intensive, requiring many cumbersome evaluations of the complex expressions that derive from higher-order asymptotic approximations. In this research, these difficulties are overcome by a synthesis of frequentist and Bayesian inference, as the latter approach is simpler in outlook and implementation. In particular, the computational problem is addressed by adapting sampling-based techniques, such as Markov Chain Monte Carlo, to attain the higher-order approximations. The result will be improved inferences in a wide variety of practical problems; examples include logistic regression, censored data models, and variance component estimation. %%% In more complicated statistical models, statisticians have typically relied on approximate methods of inference, primarily because exact methods can be both difficult to derive and complex to compute. However, the validity of these approximate methods rests on the sample size being large, which means that such methods may not be accurate in problems with small samples. Now that inexpensive computational power has become widely available, statisticians are attempting to use the more realistic and complex models. For example, models used in analyzing global environmental change, or DNA assessment, are quite complex. The focus of t his research is to develop statistical methods that offer both accuracy and computational tractability. This work necessarily blends high-performance computing with modern statistical methodology. ***
DMS 9625440 Casella 尽管在开发准确的近似技术(例如鞍点和改进的基于似然的程序)方面投入了大量的研究工作,但在评估使用这些方法在实践中可以实现的推理类型方面投入的精力较少。 当进行这种评估时,可以看出,可用的推论在范围上受到统计问题和计算复杂性的严重限制。这两个限制源是相互交织的,因为有效的常客程序的固有要求可能会产生计算困难。确保频率论推论的正确性可能需要大量计算,需要对从高阶渐近近似导出的复杂表达式进行许多繁琐的评估。在本研究中,这些困难通过频率论和贝叶斯推理的综合来克服,因为后一种方法在前景和实施上更简单。 特别是,通过采用基于采样的技术(例如马尔可夫链蒙特卡罗)来解决计算问题,以获得高阶近似值。其结果将是改进对各种实际问题的推论;示例包括逻辑回归、审查数据模型和方差分量估计。 %%% 在更复杂的统计模型中,统计学家通常依赖近似的推理方法,主要是因为精确的方法可能难以推导且计算复杂。然而,这些近似方法的有效性取决于样本量较大,这意味着这些方法在处理小样本问题时可能不准确。现在廉价的计算能力已被广泛使用,统计学家正在尝试使用更现实和更复杂的模型。例如,用于分析全球环境变化或 DNA 评估的模型非常复杂。 这项研究的重点是开发既具有准确性又易于计算的统计方法。 这项工作必然将高性能计算与现代统计方法结合起来。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Casella其他文献
Relationships Between Post-Data Accuracy Measures
- DOI:
10.1023/a:1003270426974 - 发表时间:
1997-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Constantinos Goutis;George Casella - 通讯作者:
George Casella
Objective Bayesian Analysis of Multiple Changepoints for Linear Models
线性模型多个变点的客观贝叶斯分析
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
J. M. Bernardo;M. J. Bayarri;J. O. Berger;A. Dawid;D. Heckerman;A. F. M. Smith;M. West;F. J. Girón;Elías Moreno;George Casella - 通讯作者:
George Casella
A hierarchical statistical model for estimating population properties of quantitative genes
- DOI:
10.1186/1471-2156-3-36 - 发表时间:
2002-06-12 - 期刊:
- 影响因子:2.500
- 作者:
Samuel S Wu;Chang-Xing Ma;Rongling Wu;George Casella - 通讯作者:
George Casella
Convergence of posterior odds
后验赔率的收敛
- DOI:
10.1016/s0378-3758(95)00198-0 - 发表时间:
1996 - 期刊:
- 影响因子:0.9
- 作者:
Richard A. Levine;George Casella - 通讯作者:
George Casella
Perfect samplers for mixtures of distributions
适用于分布混合的完美采样器
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
George Casella;Kerrie Mengersen;Christian P. Robert;D. M. Titterington - 通讯作者:
D. M. Titterington
George Casella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Casella', 18)}}的其他基金
Collaborative Research: Adaptive Nonparametric Markov Chain Monte Carlo Algorithms for Social Data Models with Nonparametric Priors
协作研究:具有非参数先验的社会数据模型的自适应非参数马尔可夫链蒙特卡罗算法
- 批准号:
0631588 - 财政年份:2007
- 资助金额:
$ 33.62万 - 项目类别:
Standard Grant
Statistical Models for Studying the Genetic Architecture of Dynamic Traits
研究动态性状遗传结构的统计模型
- 批准号:
0540745 - 财政年份:2006
- 资助金额:
$ 33.62万 - 项目类别:
Continuing grant
Cluster Analysis, Predictive Distributions, and Stochastic Search Algorithms
聚类分析、预测分布和随机搜索算法
- 批准号:
0405543 - 财政年份:2004
- 资助金额:
$ 33.62万 - 项目类别:
Continuing Grant
NSF Conference in the Mathematical Sciences on Data Mining and Bioinformatics; January 8-10, 2004; Gainesville, FL
NSF 数据挖掘和生物信息学数学科学会议;
- 批准号:
0337163 - 财政年份:2003
- 资助金额:
$ 33.62万 - 项目类别:
Standard Grant
NSF Conference in the Mathematical Sciences on Functional Data Analysis
NSF 函数数据分析数学科学会议
- 批准号:
0229028 - 财政年份:2002
- 资助金额:
$ 33.62万 - 项目类别:
Standard Grant
Algorithms, Approximations, and Valid Statistical Inference
算法、近似值和有效的统计推断
- 批准号:
0196353 - 财政年份:2001
- 资助金额:
$ 33.62万 - 项目类别:
Continuing Grant
Algorithms, Approximations, and Valid Statistical Inference
算法、近似值和有效的统计推断
- 批准号:
9971586 - 财政年份:1999
- 资助金额:
$ 33.62万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Construction and Evaluation of Accuracy Estimators
美法合作研究:精度估计器的构建和评估
- 批准号:
9216784 - 财政年份:1993
- 资助金额:
$ 33.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Assessing Robustness of Inference
数学科学:评估推理的稳健性
- 批准号:
9305547 - 财政年份:1993
- 资助金额:
$ 33.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Estimation of Accuracy of Hypothesis Test and Confidence Sets
数学科学:假设检验和置信集准确性的估计
- 批准号:
9100839 - 财政年份:1991
- 资助金额:
$ 33.62万 - 项目类别:
Continuing grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Targeted Infusion Project: Implementation of an HBCU Undergraduate Center for Forensic Sciences at Lincoln University
定向输注项目:林肯大学 HBCU 法医学本科中心的实施
- 批准号:
2306577 - 财政年份:2023
- 资助金额:
$ 33.62万 - 项目类别:
Standard Grant
"Forens-OMICS": a cross disciplinary implementation of omics sciences to in vivo and post-mortem ageing investigations for forensic applications
“Forens-OMICS”:将组学科学跨学科应用于法医应用的体内和死后衰老研究
- 批准号:
MR/S032878/2 - 财政年份:2022
- 资助金额:
$ 33.62万 - 项目类别:
Fellowship
Addressing the Research Capacity Gap in Global Child and Adolescent Health Disparities Utilizing Implementation and Data Sciences among Vulnerable Populations in Resource-limited Settings (ACHIEVE)
利用资源有限环境中弱势群体的实施和数据科学来解决全球儿童和青少年健康差异的研究能力差距(ACHIEVE)
- 批准号:
10627050 - 财政年份:2022
- 资助金额:
$ 33.62万 - 项目类别:
Addressing the Research Capacity Gap in Global Child and Adolescent Health Disparities Utilizing Implementation and Data Sciences among Vulnerable Populations in Resource-limited Settings (ACHIEVE)
利用资源有限环境中弱势群体的实施和数据科学来解决全球儿童和青少年健康差异的研究能力差距(ACHIEVE)
- 批准号:
10644158 - 财政年份:2022
- 资助金额:
$ 33.62万 - 项目类别:
Addressing the Research Capacity Gap in Global Child and Adolescent Health Disparities Utilizing Implementation and Data Sciences among Vulnerable Populations in Resource-limited Settings (ACHIEVE)
利用资源有限环境中弱势群体的实施和数据科学来解决全球儿童和青少年健康差异的研究能力差距(ACHIEVE)
- 批准号:
10590630 - 财政年份:2022
- 资助金额:
$ 33.62万 - 项目类别:
Addressing the Research Capacity Gap in Global Child and Adolescent Health Disparities Utilizing Implementation and Data Sciences among Vulnerable Populations in Resource-limited Settings (ACHIEVE)
利用资源有限环境中弱势群体的实施和数据科学来解决全球儿童和青少年健康差异的研究能力差距(ACHIEVE)
- 批准号:
10473075 - 财政年份:2022
- 资助金额:
$ 33.62万 - 项目类别:
Implementation and Evaluation of Curricular Undergraduate Research Experiences in the Life Sciences
生命科学课程本科生研究经验的实施和评估
- 批准号:
2150444 - 财政年份:2022
- 资助金额:
$ 33.62万 - 项目类别:
Standard Grant
Toward the implementation of evidence-based health policies to the real world-a trial of using big data analyses by the integration of arts and sciences
将循证卫生政策落实到现实世界——文理结合大数据分析的尝试
- 批准号:
20K20418 - 财政年份:2020
- 资助金额:
$ 33.62万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Implementation Project: Training of Undergraduates in Genome Engineering and Computational Data Sciences Programs at FVSU
实施项目:FVSU 基因组工程和计算数据科学项目本科生培训
- 批准号:
2011903 - 财政年份:2020
- 资助金额:
$ 33.62万 - 项目类别:
Continuing Grant
Scaling up eVisits (Home Video Visits) for ambulatory care in Kingston Health Sciences Center, A mixed-methods implementation study
扩大金斯顿健康科学中心门诊护理的 eVisits(家庭视频就诊),一项混合方法实施研究
- 批准号:
415281 - 财政年份:2019
- 资助金额:
$ 33.62万 - 项目类别:
Operating Grants














{{item.name}}会员




