Analysis of Stationary Solutions and the Pinning Phenomena for the Modeling of Phase Boundary Motions in Materials Science
材料科学中相边界运动建模的稳态解和钉扎现象分析
基本信息
- 批准号:0406033
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-15 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-0406033PI: Nung Kwan YipInstitution: Purdue UniversityTitle: Analysis of Stationary Solutions and the Pinning Phenomena for the Modeling of Phase Boundary Motions in Materials ScienceABSTRACTThis proposal strives to understand the energy landscape experienced by materials phase boundaries. This is a tremendously interesting and important problem in the regimes of applied analysis and modeling in materials science. It is due to the fact that phase boundaries, during their formations, will inevitably encounter complicated microstructures coming from the defects and impurities embedded in the environment. The investigator will study the stable and unstable patterns of the phase boundaries. These correspond to the local minimizers and saddle points on the materials energy functionals. The main emphasis of this proposal is to study the time evolution of the phase boundaries on the energy landscape, in particular, the transition from one stable configuration to another and from the pinning and de-pinning phenomena in response to some external forcing. The outcome of the scientific activity will provide a solid mathematical framework for the understanding of the dynamical response of the materials with respect to the underlying spatial environment and external parameters. The mathematical techniques involved in this proposal include variational methods, asymptotic analysis, and bifurcation theory.The understanding of material properties is becoming more and more instrumental in modern materials science, especially in the current pursuit of small scale (nano-)materials. A crucial factor is to relate the materials properties to their microstructures. The outcome of the proposed activity can help the description of the stable and unstable pattern formations of the materials phase boundaries and their dynamical behavior when external conditions changes. This gives a better understanding of the materials response to the external environment, which in turn gives better design and manufacture of the materials. The topic of this investigation is highly interdisciplinary, which can lead to close collaboration between mathematicians and materials scientists. It also provides good opportunities for human resources and educational development.
提案:DMS-0406033PI:Nung Kwan Yip 机构:普渡大学标题:材料科学中相边界运动建模的固定解和钉扎现象分析摘要该提案致力于了解材料相边界所经历的能量景观。这是材料科学应用分析和建模领域中一个非常有趣且重要的问题。这是因为相界在形成过程中不可避免地会遇到来自环境中嵌入的缺陷和杂质的复杂微观结构。研究人员将研究相界的稳定和不稳定模式。这些对应于材料能量泛函上的局部极小值和鞍点。该提案的主要重点是研究能量景观中相边界的时间演化,特别是从一种稳定构型到另一种稳定构型的转变,以及响应某些外力的钉扎和脱钉现象的转变。科学活动的成果将为理解材料相对于潜在空间环境和外部参数的动态响应提供坚实的数学框架。该提案涉及的数学技术包括变分法、渐近分析和分岔理论。对材料特性的理解在现代材料科学中变得越来越重要,特别是在当前对小尺寸(纳米)材料的追求中。一个关键因素是将材料特性与其微观结构联系起来。所提出的活动的结果可以帮助描述材料相边界的稳定和不稳定模式形成及其在外部条件变化时的动态行为。这可以更好地了解材料对外部环境的反应,从而更好地设计和制造材料。这项研究的主题是高度跨学科的,这可以促进数学家和材料科学家之间的密切合作。这也为人力资源和教育发展提供了良好的机遇。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nung Kwan Yip其他文献
Energy Scaling and Asymptotic Properties of One-Dimensional Discrete System with Generalized Lennard-Jones (m, n) Interaction
- DOI:
10.1007/s00332-021-09704-6 - 发表时间:
2021-04-01 - 期刊:
- 影响因子:2.600
- 作者:
Tao Luo;Yang Xiang;Nung Kwan Yip - 通讯作者:
Nung Kwan Yip
Nung Kwan Yip的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nung Kwan Yip', 18)}}的其他基金
Interplay Between Interfacial Patterns, Singular Perturbations and Heterogeneous Medium
界面模式、奇异扰动和异质介质之间的相互作用
- 批准号:
1009102 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Analysis of Materials Interfacial Motions by Surface Diffusion
通过表面扩散对材料界面运动进行数学分析
- 批准号:
0707926 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Modeling of Materials Interfacial Motions
材料界面运动的数学建模
- 批准号:
0072471 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Behavior of nonstationary solutions to reaction-diffusion systems possessing continua of stationary solutions
具有连续稳定解的反应扩散系统的非平稳解的行为
- 批准号:
23K03176 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clarification of the multi-layered structure of stationary solutions induced by the cross-diffusion limit in the Lotka-Volterra system
澄清 Lotka-Volterra 系统中交叉扩散极限引起的稳态解的多层结构
- 批准号:
19K03581 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularity of solutions and stationary problems for nonlinear parabolic equations
非线性抛物型方程解的奇异性和平稳问题
- 批准号:
17K05333 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure of stationary solutions and motion of interfaces in bistable reaction-diffusion equations
双稳态反应扩散方程中平稳解的结构和界面运动
- 批准号:
15K17569 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Singularity of solutions for nonlinear partial differential equations of parabolic type and structure of solutions for the stationary problems
抛物型非线性偏微分方程解的奇异性和平稳问题解的结构
- 批准号:
23540244 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure on the Set of Stationary Solutions for a Two Competing Species Model with Density-Dependent Diffusion
具有密度相关扩散的两种竞争物种模型的稳态解集的结构
- 批准号:
22540138 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the global structure of the stationary solutions of Reaction diffusion equation and its limiting system
反应扩散方程平稳解的全局结构及其极限系统研究
- 批准号:
20540122 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bifurcation structure of stationary solutions for a reaction-diffusion system with density-dependent diffusion
密度依赖扩散反应扩散系统稳态解的分叉结构
- 批准号:
19540136 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bifurcation structure of positive stationary solutions for a competition-diffusion system and its numerical verification
竞争扩散系统正平稳解的分岔结构及其数值验证
- 批准号:
15540124 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Stationary Solutions to Structural Optimization Problems
结构优化问题的非平稳解
- 批准号:
8110784 - 财政年份:1981
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




