Relativistic Fields with Point Defects
具有点缺陷的相对论场
基本信息
- 批准号:0406951
- 负责人:
- 金额:$ 18.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is divided into a classical and a quantum physical part. The classical part is concerned with the rigorous analysis of the classical limit of a new dynamical theory of relativistic electromagnetic fields with topological point defects that represent point electrons. This theory combines the nonlinear Maxwell-Born-Infeld field equations with a novel Hamilton-Jacobi type law of motion for the point defects. The most important issue here is the special relativistic radiation reaction problem, which can now be investigated without any a priori regularization or renormalization. The principal investigator will also develop a general relativistic extension of this theory, which promises progress on the problem of motion of so-called naked singularities of space-time and the gravitational field. The theory has already been partly quantized; the quantum part of the project now is concerned with the completion of the quantization. In particular, the implementation of the physically important quantum effects of spin and photon are the primary goals. So far the theory is free of any of the notorious divergence problems that plague the prevailing electromagnetic theory (QED), and it is expected that the final theory will also be entirely well-behaved. Electromagnetism is the most widely applicable part of fundamental physical theory. It touches everything from atomic physics, chemistry, and condensed matter physics to electronics and electrical engineering. The orthodox theory has certainly been hugely successful, yet it has also been plagued by infinities that have stood in the way of further progress on a number of issues. The research in this project involves a new formalism which is designed to overcome the problems of the orthodox electromagnetic theory and which has already overcome some of these. As a result of the new mathematically well-defined formalism under development, better quantitative, rigorous, computational simulation of electromagnetic phenomena may be expected. The classical version of the theory covers, for instance, the physics of high temperature plasma, with applications to space and laboratory (thermonuclear fusion) phenomena. A promising application of the new quantum theory is to positronium physics, which in particular may have medical applications in positron emission tomography.
这个项目分为经典和量子物理部分。 经典部分是关于严格分析的经典极限的一个新的动力学理论的相对论性电磁场的拓扑点缺陷,代表点电子。 该理论结合了非线性Maxwell-Born-Infeld场方程和新的点缺陷的Hamilton-Jacobi型运动定律。 这里最重要的问题是特殊的相对论辐射反应问题,现在可以在没有任何先验正则化或重整化的情况下进行研究。 首席研究员还将发展这一理论的广义相对论扩展,这有望在时空和引力场的所谓裸奇点的运动问题上取得进展。 这个理论已经部分地量子化了;现在这个项目的量子部分是关于量子化的完成。 特别地,实现自旋和光子的物理上重要的量子效应是主要目标。 到目前为止,这个理论没有任何困扰主流电磁理论(QED)的臭名昭著的发散问题,预计最终的理论也将完全表现良好。 电磁学是基础物理理论中应用最广泛的部分。 它涉及从原子物理,化学和凝聚态物理到电子和电气工程的一切。 正统理论当然取得了巨大的成功,但它也受到了无穷大的困扰,这些无穷大阻碍了在一些问题上的进一步发展。 在这个项目中的研究涉及到一个新的形式主义,旨在克服正统的电磁理论的问题,它已经克服了其中的一些。 由于新的数学定义良好的形式主义正在发展中,更好的定量,严格的,电磁现象的计算模拟可能会被期望。 例如,该理论的经典版本涵盖了高温等离子体的物理学,并应用于空间和实验室(热核聚变)现象。 新量子理论的一个有希望的应用是正电子素物理学,特别是在正电子发射断层扫描中可能有医学应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Kiessling其他文献
Michael Kiessling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Kiessling', 18)}}的其他基金
Formation of singularities in relativistic theories of electromagnetism
电磁学相对论理论奇点的形成
- 批准号:
0807705 - 财政年份:2008
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Random Matrices and Statistical Mechanics of Charged Particle Systems
带电粒子系统的随机矩阵和统计力学
- 批准号:
0103808 - 财政年份:2001
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Partial Differential Equations and Statistical Physics
数学科学:非线性偏微分方程和统计物理
- 批准号:
9623220 - 财政年份:1996
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
相似国自然基金
手性Salen配合物催化与底物诱导的不对称多组分Kabachnik-Fields反应
- 批准号:21162008
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
相似海外基金
CDS&E: Probabilistic modeling of fields and point clouds in cosmology
CDS
- 批准号:
2307109 - 财政年份:2023
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
PFI-TT: Point-of-Care Sensor Based on Electric Fields and Machine Learning for the Detection of Circulating MicroRNA to Identify Early Stage Pancreatic Cancer
PFI-TT:基于电场和机器学习的即时护理传感器,用于检测循环 MicroRNA 以识别早期胰腺癌
- 批准号:
2300064 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
PFI-TT: Point-of-Care Sensor Based on Electric Fields and Machine Learning for the Detection of Circulating MicroRNA to Identify Early Stage Pancreatic Cancer
PFI-TT:基于电场和机器学习的即时护理传感器,用于检测循环 MicroRNA 以识别早期胰腺癌
- 批准号:
2213760 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Determinantal point fields and machine learning
行列式点域和机器学习
- 批准号:
20K20884 - 财政年份:2020
- 资助金额:
$ 18.6万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Toward a general thoery of statistical and stochastic fields using fermion point processes and conformally invariant SLE curves
使用费米子点过程和共形不变 SLE 曲线建立统计和随机场的一般理论
- 批准号:
19K03674 - 财政年份:2019
- 资助金额:
$ 18.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synergy of Educational Tools for Teaching Electromagnetic Fields and Waves: Lab Experiments, Educational Java Applets, Numerical Modeling, Textbook with Power Point Presentations
电磁场和波教学教育工具的协同作用:实验室实验、教育性 Java 小程序、数值建模、带有 Power Point 演示的教科书
- 批准号:
1140718 - 财政年份:2012
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
AF: Small: Analyzing Spaces and Scalar Fields via Point Clouds
AF:小:通过点云分析空间和标量场
- 批准号:
1116258 - 财政年份:2011
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Crearion of cross learning activities of subjects and fields from a point of view of ESD
从ESD的角度创建学科和领域的交叉学习活动
- 批准号:
22653114 - 财政年份:2010
- 资助金额:
$ 18.6万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Collaborative Research: Beyond Point Vortices: Moving Singularities and Wave Fields in Fluid Mechanics
合作研究:超越点涡:流体力学中的移动奇点和波场
- 批准号:
0970113 - 财政年份:2010
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Unified Visualization of 4D Particle System and Scalar Fields by Extending Point-Based Rendering
通过扩展基于点的渲染实现 4D 粒子系统和标量场的统一可视化
- 批准号:
15607008 - 财政年份:2003
- 资助金额:
$ 18.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)