Topology of Orbifolds, Vertex Algebras and Quantum Cohomology
轨道折叠拓扑、顶点代数和量子上同调
基本信息
- 批准号:0407000
- 负责人:
- 金额:$ 10.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The first part of the project is concerned with topological and string-theoreticinvariants of orbifolds. Based on physical predictions, Chen and Ruan introduceda new cohomology theory for orbifolds. The object of study here will be algebraicstructures on the orbifold cohomology and relations with other cohomology theories. Applications and generalizations of the chiral de Rham complex, acanonical sheaf of vertex algebras associated to a manifold, are in the focus ofthe second part of the project. In particular, vertex algebras and modulesrelated to general orbifolds and their relation with orbifold cohomology,elliptic genus and quantum cohomology will be investigated. The aim of the thirdpart of the project is to study geometric and algebraic structures related tocohomological field theories of spin type and the corresponding spin analogs ofquantum cohomology and Gromov-Witten invariants. This part is related to aconjecture by E.Witten stating that the generating function of intersectionnumbers on the moduli spaces of Riemann surfaces with r-spin structures is atau-function of the r-KdV hierarchy.Ideas coming from physical models of quantum field theory are responsible formany exciting recent developments in mathematics, in particular in topology andgeometry. This project studies several geometric problems inspired by stringtheory, the current candidate for the theory unifying all kinds of physicalforces. Because of lack of experimental tools, physicists working in stringtheory are testing their methods on sophisticated mathematical models, and theirresults often indicate the existence of conjectural ties between variousseemingly remote mathematical objects. The goal of the current project is amathematical study of some of these conjectures and interactions. Besidesproducing new mathematical results, it may lead to a mathematical foundation forsome physical models and a justification of physical ways of analyzing them.
该项目的第一部分是关于orborold的拓扑不变量和弦理论不变量。在物理预测的基础上,Chen和Ruan提出了一种新的上同调理论。这里的研究对象是上同调的代数结构及其与其他上同调理论的关系。手征de Rham复形的应用和推广,是本项目第二部分的重点。手征de Rham复形是与流形相关的顶点代数的非锥束。特别地,我们将研究与一般奥氏同调有关的顶点代数和模,以及它们与奥氏上同调、椭圆亏格和量子上同调的关系。该项目第三部分的目的是研究与自旋型上同调场理论相关的几何和代数结构,以及相应的量子上同调和Gromov-Witten不变量的自旋类似。这一部分涉及E.Witten的一个猜想,即具有r-自旋结构的Riemann曲面的模空间上的交数的母函数是r-KdV族的Atau函数。来自量子场论物理模型的想法是数学中任何令人兴奋的最新发展的原因,特别是在拓扑学和几何学方面。这个项目研究了受弦理论启发的几个几何问题,弦理论是目前统一各种物理力的理论的候选者。由于缺乏实验工具,从事弦理论工作的物理学家正在复杂的数学模型上测试他们的方法,他们的结果往往表明,各种看似遥远的数学对象之间存在猜想联系。当前项目的目标是对其中一些猜想和相互作用进行数学研究。除了产生新的数学结果外,它还可能导致一些物理模型的数学基础,并证明分析它们的物理方法是正确的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arkady Vaintrob其他文献
Spin Gromov-Witten Invariants
- DOI:
10.1007/s00220-005-1389-3 - 发表时间:
2005-08-02 - 期刊:
- 影响因子:2.600
- 作者:
Tyler J. Jarvis;Takashi Kimura;Arkady Vaintrob - 通讯作者:
Arkady Vaintrob
Arkady Vaintrob的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arkady Vaintrob', 18)}}的其他基金
Moduli of Spin Curves, Geometric Vertex Algebras and Quantum Cohomology
自旋曲线模、几何顶点代数和量子上同调
- 批准号:
0104397 - 财政年份:2001
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
相似国自然基金
置换Orbifolds与有理性
- 批准号:11601452
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Higher Spin Structures on Orbifolds
Orbifolds 上的更高自旋结构
- 批准号:
2889168 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Studentship
Higher Categorical Structures with Applications to Orbifolds and Computational Semantics
更高的分类结构及其在 Orbifolds 和计算语义中的应用
- 批准号:
RGPIN-2021-03919 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Classification of Orbifolds and Symmetries of Topological Field Theories with and without Anomalies
有异常和无异常的拓扑场论的轨道折叠和对称性分类
- 批准号:
547533-2020 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Uniformization of 4-orbifolds and gauge theory
四环折叠与规范理论的均匀化
- 批准号:
22K03322 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification of Orbifolds and Symmetries of Topological Field Theories with and without Anomalies
有异常和无异常的拓扑场论的轨道折叠和对称性分类
- 批准号:
547533-2020 - 财政年份:2021
- 资助金额:
$ 10.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Higher Categorical Structures with Applications to Orbifolds and Computational Semantics
更高的分类结构及其在 Orbifolds 和计算语义中的应用
- 批准号:
RGPIN-2021-03919 - 财政年份:2021
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Classification of Orbifolds and Symmetries of Topological Field Theories with and without Anomalies
有异常和无异常的拓扑场论的轨道折叠和对称性分类
- 批准号:
547533-2020 - 财政年份:2020
- 资助金额:
$ 10.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Moduli spaces of flat connections and uniformization of 4-orbifolds
平连接的模空间和四环折的均匀化
- 批准号:
18K03289 - 财政年份:2018
- 资助金额:
$ 10.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification of low dimensional noneffective orbifolds
低维无效环折的分类
- 批准号:
510888-2017 - 财政年份:2017
- 资助金额:
$ 10.8万 - 项目类别:
University Undergraduate Student Research Awards
Hitchin components for orbifolds
Orbifolds 的 Hitchin 组件
- 批准号:
340014145 - 财政年份:2017
- 资助金额:
$ 10.8万 - 项目类别:
Priority Programmes