Adaptive Multiscale Computational Framework for Transient Problems

瞬态问题的自适应多尺度计算框架

基本信息

  • 批准号:
    0408359
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT The goal of the proposed research program is to develop an adaptive multiscale computational framework for transient problems aimed at predicting dynamic response of engineered components and structures including complex failure mechanisms operating at multiple temporal and spatial scales. The term multiscale computational framework is coined to emphasize that the dynamic behavior of structural systems is assessed from the fundamental physical processes operating at smaller spatial and temporal scales than currently resolved in simulations. The technical challenge is to develop new multiscale analysis and design concepts where material and structure are viewed as a single system and to enable the analyst to account in much more detail for the physics of the problem to ensure reliability of computations. Intellectual merit: The proposed framework will expand the fundamental computational and material mechanics knowledge in the following two respects: unified discrete-to-continuum and continuum-to-continuum scale bridging with concurrent consideration of multiple temporal and spatial scales, and adaptivity of hierarchical mathematical models. Broader impact: If successful, this effort will greatly impact science and industry's ability to model, analyze, and understand a vast array of multiscale systems in an accurate timely manner. Validation of these technologies will be performed on three feature applications: (a) Shock wave response of piezoelectric ceramics; (b) Energy absorption of honeycombs; (c) Crash prediction of polymer-based composite structural systems. These three feature applications have been carefully selected not only because they embody typical complexities associated with modeling multiple spatial and temporal scales, but more so due to their national economical impact (importance of energy absorbing material systems), and availability of experimental data critical for validation of computational capabilities. In addition to the three feature applications selected, other applications requiring large-scale, high-fidelity, predictive numerical simulation of naturally heterogeneous materials and engineered composites will benefit from this work. The technologies involved with this effort are enabling adaptive multiscale computational technologies associated with mechanical engineering, material science, physics, advanced modeling and software development. Educational materials including a new graduate course entitled Adaptive Multiscale Engineering Principles as well as tutorials and multiscale simulation tools will be developed.
摘要 拟议的研究计划的目标是开发一个自适应的多尺度计算框架的瞬态问题,旨在预测工程部件和结构的动态响应,包括复杂的故障机制在多个时间和空间尺度上运行。多尺度计算框架强调结构系统的动力学行为是从比目前模拟中解决的更小的空间和时间尺度上运行的基本物理过程来评估的。技术挑战是开发新的多尺度分析和设计概念,其中材料和结构被视为一个单一的系统,并使分析师能够更详细地考虑问题的物理性质,以确保计算的可靠性。 智力优点:所提出的框架将在以下两个方面扩展基本的计算和材料力学知识:统一的离散到连续和连续到连续的尺度桥接,同时考虑多个时间和空间尺度,以及分层数学模型的适应性。 更广泛的影响:如果成功,这一努力将极大地影响科学和工业界以准确及时的方式建模、分析和理解大量多尺度系统的能力。这些技术的验证将在三个功能应用上进行:(a)压电陶瓷的冲击波响应;(B)蜂窝的能量吸收;(c)聚合物基复合结构系统的碰撞预测。这三个功能的应用程序已被精心挑选,不仅因为它们体现了典型的复杂性与建模多个空间和时间尺度,但更重要的是,由于其国家经济的影响(能量吸收材料系统的重要性),和实验数据的可用性的计算能力的验证至关重要。除了选定的三个功能应用程序,其他应用程序需要大规模,高保真,预测性数值模拟的自然异质材料和工程复合材料将受益于这项工作。 这项工作所涉及的技术正在实现与机械工程、材料科学、物理学、高级建模和软件开发相关的自适应多尺度计算技术。教育材料,包括一个新的研究生课程,题为自适应多尺度工程原理以及教程和多尺度模拟工具将开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacob Fish其他文献

A novel GPGPU-parallelized contact detection algorithm for combined finite-discrete element method
一种新颖的GPGPU并行有限离散元组合接触检测算法
On the equivalence between the $$s$$ -method, the XFEM and the ply-by-ply discretization for delamination analyses of laminated composites
  • DOI:
    10.1007/s10704-015-9996-2
  • 发表时间:
    2015-02-17
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Yang Jiao;Jacob Fish
  • 通讯作者:
    Jacob Fish
An efficient and robust GPGPU-parallelized contact algorithm for the combined finite-discrete element method
一种用于组合有限离散元方法的高效、稳健的 GPGPU 并行接触算法
Survey on Modeling and Simulation of Multiphysics Systems
多物理场系统建模与仿真综述
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Michopoulos;Jacob Fish
  • 通讯作者:
    Jacob Fish
COMPUTATIONAL ANALYSES OF FLEXURAL BEHAVIOR FOR ULTRAHIGH PERFORMANCE FIBER REINFORCED CONCRETE BRIDGE DECKS
超高性能纤维增强混凝土桥面板弯曲行为的计算分析

Jacob Fish的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacob Fish', 18)}}的其他基金

NSF-DFG: Multiscale Data-Physics Models for the Critical Role of Interfaces in Overmolded Thermoplastic Parts
NSF-DFG:多尺度数据物理模型显示界面在包覆成型热塑性零件中的关键作用
  • 批准号:
    2225290
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Towards General Purpose Design System for Composite Materials and Structures
复合材料和结构的通用设计系统
  • 批准号:
    1127810
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Towards General Purpose Design System for Composite Materials and Structures
复合材料和结构的通用设计系统
  • 批准号:
    1025301
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF/Sandia: Collaborative Research: Adaptive Hierarchical Multiscale Framework for Modeling the Deformation of Ultra-Strong Nano-Structured Materials
NSF/桑迪亚:合作研究:用于模拟超强纳米结构材料变形的自适应分层多尺度框架
  • 批准号:
    0625267
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Workshop on Simulation-Based Engineering Science; April 15-16, 2004; Arlington, VA
基于仿真的工程科学研讨会;
  • 批准号:
    0413606
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NIRT: Modeling and Simulation Framework at the Nanoscale. Application to Process Simulation, Nanodevices, and Nanostructured Composites
NIRT:纳米尺度的建模和仿真框架。
  • 批准号:
    0303902
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Fellowships for Seventh US National Congress on Computational Mechanics to be held August 4-6, 2002, in Albuquerque, New Mexico
第七届美国全国计算力学大会奖学金将于 2002 年 8 月 4 日至 6 日在新墨西哥州阿尔伯克基举行
  • 批准号:
    0140035
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Holistic Approach to Mechanics of Heterogeneous Media
异构介质力学的整体方法
  • 批准号:
    9712227
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF Young Investigator
NSF 青年研究员
  • 批准号:
    9257203
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Research Initiation: Solution Refinement by the Adaptive Mesh Superposition Method
研究启动:通过自适应网格叠加方法细化解
  • 批准号:
    9003093
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
  • 批准号:
    2338804
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148678
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites
增材制造聚合物复合材料断裂的综合多尺度计算和实验研究
  • 批准号:
    2309845
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multiscale Computational Microscopy of HIV-1
HIV-1 的多尺度计算显微镜
  • 批准号:
    10756808
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148646
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2328533
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CDS&E: Multiscale Computational Modeling of Flow-Induced Mechanical Deformation via Nonlocal Formulations
CDS
  • 批准号:
    2245343
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: A Multiscale Computational and Experimental Framework to Elucidate the Biomechanics of Infant Growth
职业生涯:阐明婴儿生长生物力学的多尺度计算和实验框架
  • 批准号:
    2238859
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Multiscale Computational Analysis of Defect-assisted Ionic Transport in Plastically Deformed Solid Oxides
塑性变形固体氧化物中缺陷辅助离子输运的多尺度计算分析
  • 批准号:
    2322675
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multiscale computational frameworks for integrating large-scale cortical dynamics, connectivity, and behavior
用于集成大规模皮层动力学、连接性和行为的多尺度计算框架
  • 批准号:
    10840682
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了