Traces, Singularities and K-Theory
迹线、奇点和 K 理论
基本信息
- 批准号:0408993
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0408993Principal Investigator: Richard B. Melrose and Victor GuilleminThe principal investigators propose to study a variety of basicquestions relating analysis, differential geometry and topologyand especially concerned with the appearance of singularphenomena. In various collaborations, they plan to study thesolvability properties of elliptic differential andpseudodifferential operators on manifolds with singularities andto calculate the topological obstructions, particularly throughK-theory, to invertibility. Jointly, and in other collaborations,they also intend to continue the study of the propagation ofwaves, typically in the form of singular fronts, on manifoldswith singularities and the relationship between these twoproblems. Projects in Kaehler and symplectic geometry emphasizemoment maps for groups acting on these spaces and constructionssuch as cutting, gluing, and reduction by groups of symmetries.One of the features of several of these projects is theexpression of analytic objects on a global scale through thedifferential topology of the underlying space. For example, manygeometric spaces carry versions of the equation describing wavemotion, and aspects of the shapes of the spaces are recorded inthe decay and scattering properties of waves on them. This worktends to bring together various strands of research inmathematics and physics, in particular quantization theory andsymplectic geometry, the study of spaces on which Hamiltonianmechanics can be defined.
摘要奖:DMS-0408993主要研究人员:理查德·B·梅尔罗斯和维克托·吉列明主要研究与分析、微分几何和拓扑学有关的各种基本问题,特别是奇异现象的出现。在不同的合作中,他们计划研究具有奇性的流形上的椭圆微分和伪微分算子的可解性,并计算拓扑障碍,特别是通过K-理论来计算可逆性。同时,在其他合作中,他们还打算继续研究波在具有奇点的流形上的传播,通常是以奇异锋面的形式,以及这两个问题之间的关系。Kaehler和辛几何中的投影强调作用在这些空间上的群的动量映射和构造,如切割、粘合和按对称群约简。其中几个投影的特征之一是通过底层空间的微分拓扑来表示全球尺度上的分析对象。例如,许多几何空间带有描述波运动的方程的版本,空间形状的各个方面被记录在它们上的波的衰减和散射特性中。这项工作倾向于将数学和物理中的各种研究结合在一起,特别是量子化理论和辛几何,研究哈密顿力学可以在其上定义的空间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Melrose其他文献
Richard Melrose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Melrose', 18)}}的其他基金
Compactifications, resolution and differential equations
紧化、解析和微分方程
- 批准号:
1005944 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: Spectral Theory and Partial Differential Equations; July 17-August 11, 2006; Cambridge, England
会议:谱理论和偏微分方程;
- 批准号:
0542162 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Asymptotics, Homology and the Wave Equation
渐进、同调和波动方程
- 批准号:
0104116 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry and Analysis on Manifolds
数学科学:流形几何与分析
- 批准号:
9625714 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry and Arithmetics of Curves
数学科学:曲线几何与算术
- 批准号:
9403905 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Geometry and Analysis on Manifolds
数学科学:流形几何与分析
- 批准号:
9306389 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing grant
相似海外基金
Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
- 批准号:
2422557 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
- 批准号:
DP240101934 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
- 批准号:
2247702 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Interaction of singularities and number theory
奇点与数论的相互作用
- 批准号:
23H01070 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Extending the geometric theory of discrete Painleve equations - singularities, entropy and integrability
扩展离散 Painleve 方程的几何理论 - 奇点、熵和可积性
- 批准号:
22KF0073 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
- 批准号:
2247322 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Floer Theory, Arc Spaces, and Singularities
弗洛尔理论、弧空间和奇点
- 批准号:
2203308 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Singularity theory in mixed characteristic and its applications to the theory of F-singularities and birational geometry
混合特性奇异性理论及其在F-奇异性和双有理几何理论中的应用
- 批准号:
22H01112 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Singularities and Duality with Applications to Moduli Theory
奇点和对偶性及其在模理论中的应用
- 批准号:
2100389 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant