QnTM: Harnessing Quantum Entaglement: Fundamental Studies, Communication Protocols, and Computing
QnTM:利用量子纠缠:基础研究、通信协议和计算
基本信息
- 批准号:0432296
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal targets a set of interdisciplinary tasks that directly address the challenges facingthe burgeoning field of quantum information processing (QIP). In particular, both foundationalwork aimed at enhancing the understanding of fundamental underlying concepts, such as quan-tumentanglement, as well as applied work, such as designing quantum algorithms that wouldrequire only tens of qubits, while still providing better performance than their classical counter-parts,are targeted. The technical approaches to be adopted in the proposed work encompassa number of different fields, including quantum mechanics, quantum information theory andconcepts, theory of computation, combinatorics, and classical electromagnetic fields and relatedcomputational methods.Intellectual Merits: A number of fundamental challenges need to be overcome before QIPcan become a viable computing paradigm. This proposal addresses several of these challengesin a novel fashion, including: (i) What kinds of quantum algorithms can one implement insystems comprising tens of qubits? This is a very important issue facing the field of quantumcomputation: a system comprising the thousands of qubits necessary to factorize integers beyondthe capability of existing classical computers is, at best, a long-term goal. In contrast, a systemcomprising tens of qubits is a conceivable goal; however, would there be any quantum algorithmthat can be implemented on such a small scale computer and yet outperform classical algorithms?The proposal presents a quantum algorithm that can be used to simulate Maxwell's equations todetermine classical electromagnetic mode frequencies of resonant structures, where the completemode field distribution is not required. It is estimated that 50 logical qubits would be sufficientto produce useful electromagnetic simulation results. (ii) Is there life beyond Quantum KeyDistribution? The proposal presents results where the basic tools of quantum cryptography areused to build a multi-participant protocol which gives the participants the ability to anonymouslyannounce classical information. This protocol is shown to be secure against any and all attacks.This is the first ever multi-participant quantum protocol that uses a truly multipartite quantumentangled state. (iii) What are examples of nontrivial new quantum algorithms (i.e., otherthan Shor's factorization and Gover's search algorithms? The proposal reports results on thedevelopment of efficient quantum algorithms for determining the permanent of unitary andrelated matrices using the quantum optical model. A number of such critical open questionsrelated to QIP are addressed.Broader Impacts: (i) Undergraduate Interdisciplinary Program: In collaboration with the Cal-iforniaNano-science Institute (CNSI) and the Department of Electrical Engineering at UCLA,we are in the process of developing a nano-science interdepartmental program. Quantum in-formationprocessing is a key component of this program and the NSF grant will be leveragedto support this initiative, and in training graduate and undergraduate students. (ii) AnnualWorkshops On Quantum Information Processing: In collaboration with the NSF Institute ofPure and Applied Mathematics (IPAM) at UCLA, an interdisciplinary annual workshop onQuantum Information Processing and Computing will be held. (iii) Providing Support forImplementation-Oriented DARPA projects on Quantum Computing: Dr. Roychowdhury is theprincipal theoretician for a large interdisciplinary experimental group at UCLA working on de-velopingsolid-state based quantum information processing technology. The experimental effortis currently supported by grants from DARPA and ARO, and the NSF grant will leverage theexisting program and focus on transferring theoretical results to the experimental groups. (iv)Outreach and Minority Student Participation: Both IPAM and CNSI have institutional infras-tructuresin place to attract minority and K12 students, and we plan to engage them and trainthem through seminars and free access to our workshops.
该提案针对一系列跨学科任务,直接解决新兴的量子信息处理(QIP)领域面临的挑战。特别是,旨在增强对量子纠缠等基本概念的理解的基础工作,以及应用工作,例如设计只需要数十个量子比特的量子算法,同时仍然提供比经典算法更好的性能。对应部分,是有针对性的。在拟议的工作中采用的技术方法涵盖了许多不同的领域,包括量子力学,量子信息理论和概念,计算理论,组合学,经典电磁场和relatedcomputational methods.Intellectual优点:在QIP可以成为一个可行的计算范式之前,需要克服一些根本性的挑战。这个提议以一种新颖的方式解决了其中的几个挑战,包括:(i)在包含数十个量子比特的系统中可以实现什么样的量子算法?这是量子计算领域面临的一个非常重要的问题:一个包含数千个量子位的系统,需要将整数分解成超过现有经典计算机能力的整数,充其量是一个长期目标。相比之下,一个包含数十个量子比特的系统是一个可以想象的目标;然而,是否有任何量子算法可以在这样一个小规模的计算机上实现,而且性能优于经典算法?该方案提出了一种量子算法,可以用来模拟麦克斯韦方程,以确定经典的谐振结构的电磁模式频率,其中完整的模式场分布是不需要的。据估计,50个逻辑量子比特将有助于产生有用的电磁模拟结果。(ii)量子密钥分发之外还有生命吗?该提案提出的结果是,量子密码学的基本工具被用来建立一个多参与者协议,该协议使参与者能够匿名宣布经典信息。该协议对任何攻击都是安全的,这是有史以来第一个使用真正的多体量子纠缠态的多参与者量子协议。(iii)什么是非平凡的新量子算法的例子(即,Shor的分解和Gover的搜索算法该提案报告了使用量子光学模型确定酉矩阵和相关矩阵的永久性的有效量子算法的发展结果。更广泛的影响:(一)本科跨学科计划:在与加州大学洛杉矶分校纳米科学研究所(CNSI)和电气工程系合作,我们正在开发一个纳米科学跨部门计划的过程中。量子信息处理是该计划的一个关键组成部分,NSF赠款将用于支持这一倡议,并培训研究生和本科生。(ii)量子信息处理年度研讨会:与加州大学洛杉矶分校的NSF纯粹与应用数学研究所(IPAM)合作,将举办量子信息处理和计算跨学科年度研讨会。(iii)为面向实现的DARPA量子计算项目提供支持:Roychowdhury博士是加州大学洛杉矶分校一个大型跨学科实验组的首席理论家,该实验组致力于基于固态的量子信息处理技术。实验工作目前由DARPA和ARO的赠款支持,NSF的资助将利用现有的计划,并专注于将理论结果转移到实验组。(iv)外展和少数民族学生的参与:IPAM和CNSI都有吸引少数民族学生和K12学生的机构基础设施,我们计划通过研讨会和免费参加我们的讲习班来吸引他们并对他们进行培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vwani Roychowdhury其他文献
Algorithms on ensemble quantum computers
- DOI:
10.1007/s11047-009-9133-0 - 发表时间:
2009-05-30 - 期刊:
- 影响因子:1.600
- 作者:
P. Oscar Boykin;Tal Mor;Vwani Roychowdhury;Farrokh Vatan - 通讯作者:
Farrokh Vatan
Vwani Roychowdhury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vwani Roychowdhury', 18)}}的其他基金
CDS&E: Deep Spring: a Neural Network-based Approach to Design of Slender Structures
CDS
- 批准号:
2053971 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BECS: Understanding Complex Systems: Large-Scale Data Driven Modeling
BECS:理解复杂系统:大规模数据驱动建模
- 批准号:
1025104 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Balanced Overlay Network (BON): Decentralized Load Balancing And Resource Discovery via Self-Organized Random Networks
平衡覆盖网络(BON):通过自组织随机网络实现去中心化负载平衡和资源发现
- 批准号:
0615458 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
BIC: From Cellular and Gene Networks To Principles of Robust Communication and Distributed Systems Design
BIC:从细胞和基因网络到鲁棒通信和分布式系统设计的原理
- 批准号:
0524843 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
ITR/SI: Quantum Communication and Cryptography: Protocols and Systems
ITR/SI:量子通信和密码学:协议和系统
- 批准号:
0113440 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SGER: Nanoelectronic Functional Devices
SGER:纳米电子功能器件
- 批准号:
9523423 - 财政年份:1995
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Research Initiation Award: Nanoelectronic Devices: A Neuromorphic Design Paradigm
研究启动奖:纳米电子器件:神经形态设计范式
- 批准号:
9308814 - 财政年份:1993
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Parallel Computing Applied to the Simulation of Electron Transport in Advanced Semiconductor Devices
并行计算应用于先进半导体器件电子传输仿真
- 批准号:
9211073 - 财政年份:1992
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
ExpandQISE: Track 1: Harnessing a scalable platform to demonstrate multipartite quantum effects under strict conditions
ExpandQISE:轨道 1:利用可扩展平台在严格条件下演示多部分量子效应
- 批准号:
2328800 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Harnessing the Advantages of Dark Exciton in Perovskite Nanostructures as the Quantum Emitter and the Source of Charge Carriers
利用钙钛矿纳米结构中暗激子的优势作为量子发射器和电荷载流子源
- 批准号:
2304936 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
ERI: Harnessing Quantum-Classical Computing with a Cloud-Edge Framework for Cyber-Physical Systems
ERI:利用量子经典计算与网络物理系统的云边缘框架
- 批准号:
2301884 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Harnessing Quantum Computational Methods, Tensor Networks, and Machine Learning for Advanced Simulations in Quantum Field Theories
利用量子计算方法、张量网络和机器学习进行量子场论的高级模拟
- 批准号:
2876830 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
CAREER: Quantum silicon phononics: Harnessing long-lived phonons for memories and interconnects
职业:量子硅声学:利用长寿命声子进行存储器和互连
- 批准号:
2238058 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Harnessing Quantum Field Theory For Gravity
利用量子场论研究引力
- 批准号:
ST/V003895/2 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Fellowship
A novel source of quantum light: harnessing cascaded downconversion as a resource for quantum technologies
一种新颖的量子光源:利用级联下转换作为量子技术的资源
- 批准号:
RGPIN-2022-03962 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Harnessing Quantum Materials to design Antiferromagnetic Topological Textures
利用量子材料设计反铁磁拓扑纹理
- 批准号:
EP/X024938/1 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Fellowship
CAREER: Warm Quantum Materials: Harnessing Exotic Quantum Properties at High Temperatures
职业:温量子材料:在高温下利用奇异的量子特性
- 批准号:
2046796 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Harnessing genuine quantum nonlocality
利用真正的量子非定域性
- 批准号:
DP210101651 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects














{{item.name}}会员




