BECS: Understanding Complex Systems: Large-Scale Data Driven Modeling

BECS:理解复杂系统:大规模数据驱动建模

基本信息

  • 批准号:
    1025104
  • 负责人:
  • 金额:
    $ 31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

The objective of the proposal is to discover the general properties of complex systems so that these principles can be applied to both manipulate existing complex systems and to design engineered complex systems for future applications. As a model complex system, this proposal addresses modeling and analysis of the financial markets and the financial time series. There are numerous non-trivial fluctuation patterns in financial systems at every scale. These systems are composed of many agents, and the interactions and strategies on the microscopic scale build up to the macroscopic scale, which get reflected in the prices of single and multiple assets in the economy. The large scale dynamics and structure are often independent of the particular details of the microscopic interaction. This "universality" makes it meaningful to design the most convenient "minimal model". The financial markets and the financial time series are clearly such phenomena. Using ideas from statistical physics based models, minority games, adaptive systems, and non-linear systems theory, we propose to develop multi-agent succinct models that can capture various features of the highly-observable systems. The project will lead to a fundamental understanding of the types of microscopic rules and their interactions that lead to the emergence of global systems and an understanding of what gives rise to complex behavior such as fluctuations, long-term correlations and memory, and successful recovery from a major collapses in such systems.The societal impact of successful research in large complex systems ranges from theglobal information economy, to shared infrastructure, to global ecology and human health. The scientific impact extends to statistical mechanics, nonlinear dynamics and systems and numerous other areas. At the same time, our project will contribute significantly to training, education and outreach. For example, graduate students and postdoctoral researchers will broaden their exposure by working jointly with both a mathematician and an engineering faculty, and we will use a proven model for engaging undergraduates in our research through the Institute for Pure and Applied Mathematics (IPAM at UCLA). We will offer a summer school to train many more young scientists in the relevant techniques.
该提案的目的是发现复杂系统的一般属性,以便这些原理可以应用于操纵现有的复杂系统,并为未来的应用设计工程复杂系统。作为一个模型复杂系统,该提案解决了金融市场和金融时间序列的建模和分析。各个规模的金融体系中都存在许多重要的波动模式。这些系统由许多主体组成,微观尺度上的相互作用和策略累积到宏观尺度上,并反映在经济中单一和多种资产的价格中。大尺度动力学和结构通常独立于微观相互作用的特定细节。这种“通用性”使得设计最方便的“最小模型”变得有意义。金融市场和金融时间序列显然就是这样的现象。利用基于统计物理的模型、少数博弈、自适应系统和非线性系统理论的思想,我们建议开发多智能体简洁模型,可以捕获高度可观察系统的各种特征。该项目将使人们对导致全球系统出现的微观规则类型及其相互作用有一个基本的了解,并了解是什么导致了波动、长期相关性和记忆等复杂行为,以及从此类系统的重大崩溃中成功恢复。大型复杂系统的成功研究的社会影响范围从全球信息经济到共享基础设施,再到全球生态和人类健康。科学影响延伸到统计力学、非线性动力学和系统以及许多其他领域。与此同时,我们的项目将为培训、教育和推广做出重大贡献。例如,研究生和博士后研究人员将通过与数学家和工程学院合作来扩大他们的接触范围,我们将通过纯粹与应用数学研究所(加州大学洛杉矶分校的 IPAM)使用经过验证的模型让本科生参与我们的研究。我们将开设暑期学校,培训更多年轻科学家掌握相关技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vwani Roychowdhury其他文献

Algorithms on ensemble quantum computers
  • DOI:
    10.1007/s11047-009-9133-0
  • 发表时间:
    2009-05-30
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    P. Oscar Boykin;Tal Mor;Vwani Roychowdhury;Farrokh Vatan
  • 通讯作者:
    Farrokh Vatan

Vwani Roychowdhury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vwani Roychowdhury', 18)}}的其他基金

CDS&E: Deep Spring: a Neural Network-based Approach to Design of Slender Structures
CDS
  • 批准号:
    2053971
  • 财政年份:
    2021
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Balanced Overlay Network (BON): Decentralized Load Balancing And Resource Discovery via Self-Organized Random Networks
平衡覆盖网络(BON):通过自组织随机网络实现去中心化负载平衡和资源发现
  • 批准号:
    0615458
  • 财政年份:
    2006
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
BIC: From Cellular and Gene Networks To Principles of Robust Communication and Distributed Systems Design
BIC:从细胞和基因网络到鲁棒通信和分布式系统设计的原理
  • 批准号:
    0524843
  • 财政年份:
    2005
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
QnTM: Harnessing Quantum Entaglement: Fundamental Studies, Communication Protocols, and Computing
QnTM:利用量子纠缠:基础研究、通信协议和计算
  • 批准号:
    0432296
  • 财政年份:
    2004
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
ITR/SI: Quantum Communication and Cryptography: Protocols and Systems
ITR/SI:量子通信和密码学:协议和系统
  • 批准号:
    0113440
  • 财政年份:
    2001
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
SGER: Nanoelectronic Functional Devices
SGER:纳米电子功能器件
  • 批准号:
    9523423
  • 财政年份:
    1995
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Research Initiation Award: Nanoelectronic Devices: A Neuromorphic Design Paradigm
研究启动奖:纳米电子器件:神经形态设计范式
  • 批准号:
    9308814
  • 财政年份:
    1993
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Parallel Computing Applied to the Simulation of Electron Transport in Advanced Semiconductor Devices
并行计算应用于先进半导体器件电子传输仿真
  • 批准号:
    9211073
  • 财政年份:
    1992
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Deep imaging for understanding molecular processes in complex organisms
深度成像用于了解复杂生物体的分子过程
  • 批准号:
    LE240100091
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
CAREER: Understanding Interface Controlled Mechanisms of Recrystallization in Microstructurally Complex Mg Alloys
职业:了解微观结构复杂镁合金中界面控制的再结晶机制
  • 批准号:
    2339387
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Fundamental Understanding of Chemical Complexity on Crack Tip Plasticity of Refractory Complex Concentrated Alloys
化学复杂性对难熔复合浓缩合金裂纹尖端塑性的基本认识
  • 批准号:
    2316762
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Fundamental understanding of turbulent flow over fluid-saturated complex porous media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W03350X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Research Grant
MicroBlast: Understanding and predicting blast loading in complex environments
MicroBlast:了解和预测复杂环境中的爆炸载荷
  • 批准号:
    EP/X029018/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Research Grant
Fundamental Understanding of Turbulent Flow over Fluid-Saturated Complex Porous Media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W033550/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Research Grant
Deciphering the complex pharmacology of CB1: towards the understanding of a third signaling pathway
解读 CB1 的复杂药理学:了解第三条信号通路
  • 批准号:
    10667865
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了