Applications of Field Theory to Condensed Matter Physics

场论在凝聚态物理中的应用

基本信息

项目摘要

This grant provides support for research into the theory of condensed matter. The objective is to understand condensed matter systems involving strongly coupled degrees of freedom, and in particular the phase diagram and quantum critical behavior of topological phases and electronic liquid crystal phases. Topological phases are states of matter that do not have an order parameter, and are therefore not the product of spontaneous symmetry breaking, but posses a kind of "quantum order" in which the ground state degeneracy is determined by the topology of the space in which they live. Electronic liquid crystal phases are states of matter in which strongly correlated electronic organize themselves in inhomogeneous and anisotropic patterns, and are closely related with mechanisms of high temperature superconductivity. Related topics that will be investigated include quantum coherence and interference phenomena in quantum Hall systems and strongly coupled junctions, and the relation between electronic liquid crystal phases and high temperature superconductivity.The nature of the problems to be studied requires the methods and ideas of quantum field theory. This is the best tool with which to attack problems involving the statistical and quantum physics of strongly interacting systems. It enables this research to exploit the continuing and mutually enriching cross-fertilization of ideas between condensed matter systems and high energy physics.Intellectual Merit: The research addresses a range of important and difficult problems in currently fertile, and therefore very active, areas of fundamental physics. Broader Impact: The grant makes possible the continued training of talented researchers. The principal investigator has an excellent record training students and postdoctoral associates, and his work with Hispanic and female scientists is particularly noted.%%%This grant supports research that is at the core of modern condensed matter physics. In particular, the principal investigator will apply advanced theoretical techniques to the study of exotic phases of electrons that interact strongly with each other. Besides the fundamental interest in these phases and associated phenomena, e.g., high temperature superconductivity, these studies may lead to the discovery of new materials and devices. The research provides an excellent training ground for students.
这项拨款为凝聚态物质理论的研究提供支持。目的是了解涉及强耦合自由度的凝聚态系统,特别是拓扑相和电子液晶相的相图和量子临界行为。拓扑相是没有有序参数的物质状态,因此不是自发对称破缺的产物,而是具有一种“量子秩序”,其中基态的简并是由它们所处空间的拓扑决定的。电子液晶相是强相关电子以非均匀和各向异性模式组织的物质状态,与高温超导机制密切相关。相关主题将研究包括量子霍尔系统和强耦合结中的量子相干性和干涉现象,以及电子液晶相与高温超导性之间的关系。要研究的问题的性质需要量子场论的方法和思想。这是解决涉及强相互作用系统的统计和量子物理问题的最佳工具。它使这项研究能够利用凝聚态系统和高能物理之间持续和相互丰富的思想相互施肥。智力优势:该研究解决了当前基础物理领域的一系列重要和困难的问题,这些问题非常丰富,因此非常活跃。更广泛的影响:该资助使有才能的研究人员的持续培训成为可能。首席研究员在培养学生和博士后助理方面有着出色的记录,他与西班牙裔和女性科学家的合作尤其引人注目。该基金支持现代凝聚态物理的核心研究。特别是,首席研究员将应用先进的理论技术来研究相互作用强烈的电子的奇异相。除了对这些相和相关现象的基本兴趣,例如高温超导性,这些研究可能会导致新材料和新器件的发现。这项研究为学生提供了一个很好的训练场所。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eduardo Fradkin其他文献

Magnetic-field-sensitive charge density waves in the superconductor UTe2
超导体 UTe2 中对磁场敏感的电荷密度波
  • DOI:
    10.1038/s41586-023-06005-8
  • 发表时间:
    2023-06-28
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Anuva Aishwarya;Julian May-Mann;Arjun Raghavan;Laimei Nie;Marisa Romanelli;Sheng Ran;Shanta R. Saha;Johnpierre Paglione;Nicholas P. Butch;Eduardo Fradkin;Vidya Madhavan
  • 通讯作者:
    Vidya Madhavan
Competition between charge-density waves and superconductivity in striped systems
  • DOI:
    10.1016/j.physb.2005.01.171
  • 发表时间:
    2005-04-30
  • 期刊:
  • 影响因子:
  • 作者:
    Enrico Arrigoni;Eduardo Fradkin;Steven A. Kivelson
  • 通讯作者:
    Steven A. Kivelson
Superconductivity's cousin
超导性的表亲
  • DOI:
    10.1038/387018a0
  • 发表时间:
    1997-05-01
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Eduardo Fradkin
  • 通讯作者:
    Eduardo Fradkin
Ineluctable complexity
不可避免的复杂性
  • DOI:
    10.1038/nphys2498
  • 发表时间:
    2012-11-30
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Eduardo Fradkin;Steven A. Kivelson
  • 通讯作者:
    Steven A. Kivelson
Absence of a bulk charge density wave signature in x-ray measurements of UTe$_2$
UTe$_2$ 的 X 射线测量中缺乏体电荷密度波特征
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Caitlin S. Kengle;Dipanjan Chaudhuri;Xuefei Guo;T. A. Johnson;S. Bettler;Wolfgang Simeth;M. Krogstad;Zahir Islam;Sheng Ran;Shanta R. Saha;J. Paglione;N. Butch;Eduardo Fradkin;V. Madhavan;Peter Abbamonte
  • 通讯作者:
    Peter Abbamonte

Eduardo Fradkin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eduardo Fradkin', 18)}}的其他基金

Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
  • 批准号:
    2225920
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Travel Support for US Physicists to the 27th IUPAP Triennial Conference on Thermodynamics and Statistical Mechanics (STATPHYS-27) Buenos Aires, Argentina 2019
为美国物理学家参加 2019 年阿根廷布宜诺斯艾利斯第 27 届 IUPAP 热力学和统计力学三年一度会议 (STATPHYS-27) 提供差旅支持
  • 批准号:
    1922479
  • 财政年份:
    2019
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
  • 批准号:
    1725401
  • 财政年份:
    2017
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
  • 批准号:
    1408713
  • 财政年份:
    2014
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
  • 批准号:
    1064319
  • 财政年份:
    2011
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
  • 批准号:
    0758462
  • 财政年份:
    2008
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
  • 批准号:
    0132990
  • 财政年份:
    2002
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
  • 批准号:
    9817941
  • 财政年份:
    1999
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
  • 批准号:
    9424511
  • 财政年份:
    1995
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
U.S.-Argentina Cooperative Science Program: Research on Fermionic Models in Condensed Matter Physics and Field Theory
美阿根廷合作科学项目:凝聚态物理和场论中的费米子模型研究
  • 批准号:
    9218540
  • 财政年份:
    1993
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
  • 批准号:
    21506066
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
  • 批准号:
    2882485
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Studentship
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
  • 批准号:
    2225920
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Non-perturbative methods to quantum field theory and its applications to superstring theory
量子场论的非微扰方法及其在超弦理论中的应用
  • 批准号:
    22KJ2096
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
New Developments in Mean Field Game Theory and Applications
平均场博弈论及其应用的新进展
  • 批准号:
    2106556
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Wider Applications of Lattice Field Theory
晶格场论的更广泛应用
  • 批准号:
    2601488
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Studentship
K-theory of C*-algebras with Applications in Topological Quantum Field Theory
C*-代数的 K 理论及其在拓扑量子场论中的应用
  • 批准号:
    2601068
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Studentship
Cosmological applications of group field theory
群场论的宇宙学应用
  • 批准号:
    2485550
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Studentship
computation and applications of symplectic field theory
辛场论的计算与应用
  • 批准号:
    19K23404
  • 财政年份:
    2019
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
New Extensions of the Master Equation in Mean Field Control Theory and Applications
平均场控制理论与应用主方程的新推广
  • 批准号:
    1905449
  • 财政年份:
    2019
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
New approaches and applications of integrable quantum field theory
可积量子场论新方法与应用
  • 批准号:
    DP190103144
  • 财政年份:
    2019
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了