Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
基本信息
- 批准号:1725401
- 负责人:
- 金额:$ 66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical research and education aimed at understanding condensed matter systems whose behavior is governed by strong effects of quantum mechanics and strong interactions between their constituent electrons. Such understanding could lead to the prediction of new states of matter with novel properties as well as to the discovery of new materials with potentially useful applications. The PI and his collaborators have predicted the existence of strongly interacting quantum states of matter, named intertwined orders, in which electrons organize themselves in complex patterns. Intertwined orders describe physical systems in which, due to the strong interactions between the constituent electrons, different and seemingly competing types of organization coexist and emerge together with nearly equal strength. Superconductors are a relevant example. These are materials in which, at sufficiently low temperatures, electrons enter a cooperative quantum mechanical state that enables them to conduct electricity without any resistance. High-temperature superconductors are a particularly interesting species because they exhibit superconductivity at much higher temperatures than many other known classes of superconductors. The PI's proposed state of matter may help explain how this is possible, and how materials that exhibit superconductivity at room temperature might be discovered. This could lead to virtually lossless transmission of electric power and other energy-related applications. The other focus of the research concerns the understanding of new states of matter, called topological phases, which are essentially immune to the usually destructive effects that disorder and other defects have on material properties. Topological phases are predicted to have unusual properties that could enable computation based on the laws of quantum mechanics. A quantum computer could solve certain problems much faster than any currently existing computer. The research involves cutting-edge problems in the physics of materials and provides excellent opportunities to train the next generation of theoretical scientists. It also opens new possibilities for future technologies related to advanced solid-state materials for electronic devices. Research and education will be further integrated through the development of advanced curricular materials.TECHNICAL SUMMARYThis award supports theoretical research and education aimed at understanding condensed matter systems involving many strongly coupled degrees of freedom whose behavior is governed by strong effects of quantum mechanics. The electrons in such strongly correlated systems organize spontaneously in electronic liquid-crystal phases and in topological phases. An unavoidable feature of these phases is that they naturally describe intertwined orders. The main focus of the project is on the theory of intertwined orders in strongly correlated systems, and on topological phases of matter. Both lines of research require the development of new theoretical insights and the use of methods and ideas from quantum field theory. The projects include studies of the emergence of pair-density-wave superconducting states in microscopic models, both in a quasi-one-dimensional setting and in ladder systems, developing an effective field theory of pair-density-wave and charge 4e superconducting states, and uncovering the mechanism connecting electronic nematic order and superconductivity. The PI's work on topological phases of matter aims to establish a relation between electronic nematic order and paired quantum Hall states (a form of intertwined orders), and to develop the lattice Chern-Simons gauge theory of frustrated quantum antiferromagnets, with applications to the theory of fractionalized Chern insulators. An important new project aims at finding a relation between the theory of quantum critical loops that the PI developed earlier and the recently conjectured quantum dualities for Dirac systems.The research involves cutting-edge problems in the physics of materials and provides excellent opportunities to train the next generation of theoretical scientists. It also opens new possibilities for future technologies related to advanced solid-state materials for electronic devices. Research and education will be further integrated through the development of advanced curricular materials.
非技术性总结该奖项支持理论研究和教育,旨在了解凝聚态系统,其行为受量子力学的强烈影响及其组成电子之间的强烈相互作用的影响。这种理解可能会导致预测具有新特性的新物质状态,以及发现具有潜在有用应用的新材料。PI和他的合作者预测了物质的强相互作用量子态的存在,称为交织秩序,其中电子以复杂的模式组织自己。互扰有序描述的是这样一种物理系统,在这种系统中,由于组成电子之间的强相互作用,不同的、看似竞争的组织类型共存,并以几乎相等的强度出现。超导体就是一个相关的例子。在这些材料中,在足够低的温度下,电子进入合作的量子力学状态,使它们能够在没有任何电阻的情况下导电。高温超导体是一个特别有趣的物种,因为它们在比许多其他已知类别的超导体高得多的温度下表现出超导性。PI提出的物质状态可能有助于解释这是如何可能的,以及如何发现在室温下表现出超导性的材料。这可能导致电力和其他能源相关应用的几乎无损传输。该研究的另一个重点是理解新的物质状态,称为拓扑相,它基本上不受无序和其他缺陷对材料性质的破坏性影响。拓扑相被预测具有不寻常的性质,可以根据量子力学定律进行计算。量子计算机可以比现有的任何计算机更快地解决某些问题。这项研究涉及材料物理学的前沿问题,并为培养下一代理论科学家提供了绝佳的机会。它还为与电子设备的先进固态材料相关的未来技术开辟了新的可能性。通过开发先进的课程材料,研究和教育将进一步结合起来。技术总结该奖项支持理论研究和教育,旨在理解涉及许多强耦合自由度的凝聚态系统,其行为受量子力学的强烈影响。在这种强关联系统中的电子自发地组织在电子液晶相和拓扑相。这些阶段的一个不可避免的特征是,它们自然地描述了相互交织的秩序。该项目的主要重点是强相关系统中交织秩序的理论,以及物质的拓扑相。这两条研究路线都需要发展新的理论见解,并使用量子场论的方法和思想。这些项目包括研究准一维和梯形系统中微观模型中成对密度波超导态的出现,发展成对密度波和电荷4 e超导态的有效场论,以及揭示电子有序和超导性之间的联系机制。PI在物质拓扑相方面的工作旨在建立电子有序和成对量子霍尔态(一种交织有序的形式)之间的关系,并发展受抑量子反铁磁体的格点陈-西蒙斯规范理论,并应用于分形陈绝缘体理论。一项重要的新项目旨在发现PI早期开发的量子临界回路理论与最近发现的狄拉克系统量子对偶之间的关系,该研究涉及材料物理学的前沿问题,并为培养下一代理论科学家提供了极好的机会。它还为与电子设备的先进固态材料相关的未来技术开辟了新的可能性。将通过编制先进的教材,进一步将研究和教育结合起来。
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fractionalizing global symmetry on looplike topological excitations
环状拓扑激励上的全局对称性的分数化
- DOI:10.1103/physrevb.105.205137
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Ning, Shang-Qiang;Liu, Zheng-Xin;Ye, Peng
- 通讯作者:Ye, Peng
Helical spin thermoelectrics controlled by a side-coupled magnetic quantum dot in the quantum spin Hall state
- DOI:10.1103/physrevb.98.195429
- 发表时间:2018-11-19
- 期刊:
- 影响因子:3.7
- 作者:Roura-Bas, Pablo;Arrachea, Liliana;Fradkin, Eduardo
- 通讯作者:Fradkin, Eduardo
Thermalization of randomly coupled SYK models
- DOI:10.1088/1742-5468/ac416b
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:R. Sohal;L. Nie;Xiao-Qi Sun;E. Fradkin
- 通讯作者:R. Sohal;L. Nie;Xiao-Qi Sun;E. Fradkin
Topology and the one-dimensional Kondo-Heisenberg model
拓扑和一维近藤-海森堡模型
- DOI:10.1103/physrevb.101.165133
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:May-Mann, Julian;Levy, Ryan;Soto-Garrido, Rodrigo;Cho, Gil Young;Clark, Bryan K.;Fradkin, Eduardo
- 通讯作者:Fradkin, Eduardo
Generalized Wen-Zee terms
- DOI:10.1103/physrevb.99.205120
- 发表时间:2018-07
- 期刊:
- 影响因子:3.7
- 作者:Bolin Han;Huajia Wang;P. Ye
- 通讯作者:Bolin Han;Huajia Wang;P. Ye
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eduardo Fradkin其他文献
Magnetic-field-sensitive charge density waves in the superconductor UTe2
超导体 UTe2 中对磁场敏感的电荷密度波
- DOI:
10.1038/s41586-023-06005-8 - 发表时间:
2023-06-28 - 期刊:
- 影响因子:48.500
- 作者:
Anuva Aishwarya;Julian May-Mann;Arjun Raghavan;Laimei Nie;Marisa Romanelli;Sheng Ran;Shanta R. Saha;Johnpierre Paglione;Nicholas P. Butch;Eduardo Fradkin;Vidya Madhavan - 通讯作者:
Vidya Madhavan
Competition between charge-density waves and superconductivity in striped systems
- DOI:
10.1016/j.physb.2005.01.171 - 发表时间:
2005-04-30 - 期刊:
- 影响因子:
- 作者:
Enrico Arrigoni;Eduardo Fradkin;Steven A. Kivelson - 通讯作者:
Steven A. Kivelson
Superconductivity's cousin
超导性的表亲
- DOI:
10.1038/387018a0 - 发表时间:
1997-05-01 - 期刊:
- 影响因子:48.500
- 作者:
Eduardo Fradkin - 通讯作者:
Eduardo Fradkin
Ineluctable complexity
不可避免的复杂性
- DOI:
10.1038/nphys2498 - 发表时间:
2012-11-30 - 期刊:
- 影响因子:18.400
- 作者:
Eduardo Fradkin;Steven A. Kivelson - 通讯作者:
Steven A. Kivelson
Absence of a bulk charge density wave signature in x-ray measurements of UTe$_2$
UTe$_2$ 的 X 射线测量中缺乏体电荷密度波特征
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Caitlin S. Kengle;Dipanjan Chaudhuri;Xuefei Guo;T. A. Johnson;S. Bettler;Wolfgang Simeth;M. Krogstad;Zahir Islam;Sheng Ran;Shanta R. Saha;J. Paglione;N. Butch;Eduardo Fradkin;V. Madhavan;Peter Abbamonte - 通讯作者:
Peter Abbamonte
Eduardo Fradkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eduardo Fradkin', 18)}}的其他基金
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
- 批准号:
2225920 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
Continuing Grant
Travel Support for US Physicists to the 27th IUPAP Triennial Conference on Thermodynamics and Statistical Mechanics (STATPHYS-27) Buenos Aires, Argentina 2019
为美国物理学家参加 2019 年阿根廷布宜诺斯艾利斯第 27 届 IUPAP 热力学和统计力学三年一度会议 (STATPHYS-27) 提供差旅支持
- 批准号:
1922479 - 财政年份:2019
- 资助金额:
$ 66万 - 项目类别:
Standard Grant
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
- 批准号:
1408713 - 财政年份:2014
- 资助金额:
$ 66万 - 项目类别:
Continuing Grant
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
- 批准号:
1064319 - 财政年份:2011
- 资助金额:
$ 66万 - 项目类别:
Continuing Grant
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
- 批准号:
0758462 - 财政年份:2008
- 资助金额:
$ 66万 - 项目类别:
Continuing Grant
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
- 批准号:
0442537 - 财政年份:2005
- 资助金额:
$ 66万 - 项目类别:
Continuing Grant
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
- 批准号:
0132990 - 财政年份:2002
- 资助金额:
$ 66万 - 项目类别:
Continuing Grant
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
- 批准号:
9817941 - 财政年份:1999
- 资助金额:
$ 66万 - 项目类别:
Continuing Grant
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
- 批准号:
9424511 - 财政年份:1995
- 资助金额:
$ 66万 - 项目类别:
Continuing Grant
U.S.-Argentina Cooperative Science Program: Research on Fermionic Models in Condensed Matter Physics and Field Theory
美阿根廷合作科学项目:凝聚态物理和场论中的费米子模型研究
- 批准号:
9218540 - 财政年份:1993
- 资助金额:
$ 66万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
- 批准号:21506066
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
- 批准号:
2882485 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
Studentship
Applications of Field Theory to Condensed Matter Physics
场论在凝聚态物理中的应用
- 批准号:
2225920 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
Continuing Grant
Non-perturbative methods to quantum field theory and its applications to superstring theory
量子场论的非微扰方法及其在超弦理论中的应用
- 批准号:
22KJ2096 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
Grant-in-Aid for JSPS Fellows
New Developments in Mean Field Game Theory and Applications
平均场博弈论及其应用的新进展
- 批准号:
2106556 - 财政年份:2021
- 资助金额:
$ 66万 - 项目类别:
Standard Grant
Wider Applications of Lattice Field Theory
晶格场论的更广泛应用
- 批准号:
2601488 - 财政年份:2021
- 资助金额:
$ 66万 - 项目类别:
Studentship
K-theory of C*-algebras with Applications in Topological Quantum Field Theory
C*-代数的 K 理论及其在拓扑量子场论中的应用
- 批准号:
2601068 - 财政年份:2021
- 资助金额:
$ 66万 - 项目类别:
Studentship
Cosmological applications of group field theory
群场论的宇宙学应用
- 批准号:
2485550 - 财政年份:2020
- 资助金额:
$ 66万 - 项目类别:
Studentship
computation and applications of symplectic field theory
辛场论的计算与应用
- 批准号:
19K23404 - 财政年份:2019
- 资助金额:
$ 66万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
New Extensions of the Master Equation in Mean Field Control Theory and Applications
平均场控制理论与应用主方程的新推广
- 批准号:
1905449 - 财政年份:2019
- 资助金额:
$ 66万 - 项目类别:
Standard Grant
New approaches and applications of integrable quantum field theory
可积量子场论新方法与应用
- 批准号:
DP190103144 - 财政年份:2019
- 资助金额:
$ 66万 - 项目类别:
Discovery Projects