Collaborative Research: Modeling the Growth and Adhesion of Auricular Chondrocytes Under Controlled Flow Conditions

合作研究:模拟受控流动条件下耳廓软骨细胞的生长和粘附

基本信息

  • 批准号:
    0443826
  • 负责人:
  • 金额:
    $ 74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-05-15 至 2010-04-30
  • 项目状态:
    已结题

项目摘要

This is a collaborative, interdisciplinary proposal in the area of Mathematical Biology. The main goal is to develop mathematical models and numerical methods to study diffusion-mediated and stress-induced growth and adhesion of ear cartilage cells (auricular chondrocytes) in a novel environment: seeded on an artificial surface exposed to the pulsatile flow conditions. Chondrocytes are typically studied in the environments where they normally reside such as the joints in hips, intervertebral disks or the ear. It is not known how auricular chondrocytes grow, adhere or slough-off from artificial surfaces immersed a fluid. By developing mathematical models, numerical simulations and experimental procedures the investigators propose to design a cell-fluid-structure interaction algorithm that would couple chondrocytes growth with the novel environmental conditions. The proposed mathematical models are based on the study of the coupling between the three-phase flow equations describing ear cartilage growth, a probabilistic model for cell adhesion dynamics, and a numerical model for particle-fluid interaction. Experimental validation will be performed using the flow loop assembled by the investigators at the Texas Heart Institute. Results from the basic research proposed by the PIs will shed light on the feasibility of using genetically engineered auricular chondrocytes as a long-lasting biocompatible coating for vascular devices. This is an interdisciplinary proposal combining mathematical modeling, engineering, and biology. The goal is to study the behavior of genetically engineered ear cartilage cells as linings for artificial blood vessels and stents used to repair weakened and blocked arteries. Vessel blockage and rupture are the underlying cause of most heart attacks and strokes which are the leading causes of death in America. Cartilage cells might provide a long-lasting and biocompatible surface lining which could minimize the incidence of inflammation, immune reactions, and restenosis following repair and stenting of diseased blood vessels. This collaborative study utilizes sophisticated mathematical tools, scientific computing techniques, genetic engineering, high resolution ultrasound, and cell biology methods to target the problem of treating vascular disease with a high potential impact for the national health.
这是数学生物学领域的一项合作的、跨学科的建议。本研究的主要目的是建立数学模型和数值方法来研究在一种新的环境中扩散介导和应力诱导的耳软骨细胞(耳软骨细胞)的生长和黏附:种植在脉动流动条件下的人工表面上。软骨细胞通常是在它们通常居住的环境中进行研究的,例如髋关节、椎间盘或耳朵。目前尚不清楚耳廓软骨细胞是如何生长、附着或从浸泡在液体中的人工表面脱落的。通过开发数学模型、数值模拟和实验程序,研究人员建议设计一种细胞-流体-结构相互作用算法,将软骨细胞的生长与新的环境条件结合起来。所提出的数学模型是基于描述耳软骨生长的三相流动方程、细胞黏附动力学的概率模型和颗粒-流体相互作用的数值模型之间的耦合而建立的。实验验证将使用德克萨斯心脏研究所的研究人员组装的流动回路进行。PIS提出的基础研究结果将阐明使用基因工程耳廓软骨细胞作为血管装置的长期生物相容性涂层的可行性。这是一项结合了数学建模、工程学和生物学的跨学科建议。其目标是研究基因工程耳软骨细胞作为人造血管衬里和支架的行为,支架用于修复受损和堵塞的动脉。血管堵塞和破裂是大多数心脏病发作和中风的根本原因,而心脏病和中风是美国主要的死亡原因。软骨细胞可能提供一种持久的、生物相容的表面衬里,可以将病变血管修复和支架术后炎症、免疫反应和再狭窄的发生率降至最低。这项合作研究利用先进的数学工具、科学计算技术、基因工程、高分辨率超声和细胞生物学方法,针对对国民健康具有高度潜在影响的血管疾病的治疗问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suncica Canic其他文献

Suncica Canic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suncica Canic', 18)}}的其他基金

Collaborative Research: Mechanistic modeling of cell encapsulation
合作研究:细胞封装的机制建模
  • 批准号:
    2247000
  • 财政年份:
    2023
  • 资助金额:
    $ 74万
  • 项目类别:
    Continuing Grant
A Computational Approach to the Design of a Bioartificial Pancreas
生物人工胰腺设计的计算方法
  • 批准号:
    2011319
  • 财政年份:
    2020
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant
Development of Mathematical Methods for Next Generation Stent Design
下一代支架设计数学方法的开发
  • 批准号:
    1853340
  • 财政年份:
    2019
  • 资助金额:
    $ 74万
  • 项目类别:
    Continuing Grant
Fluid-elastic structure interaction with the Navier slip boundary condition
流弹性结构与纳维滑移边界条件的相互作用
  • 批准号:
    1613757
  • 财政年份:
    2016
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant
Fluid-structure interaction with multi-layered structures: a new class of partitioned schemes
多层结构的流固耦合:一类新的分区方案
  • 批准号:
    1318763
  • 财政年份:
    2013
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant
Fluid-multi-layered-structure interaction problems
流体-多层结构相互作用问题
  • 批准号:
    1311709
  • 财政年份:
    2013
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing the Diagnosis and Quantification of Mitral Valve Regurgitation with Mathematical Modeling
合作研究:通过数学建模推进二尖瓣反流的诊断和量化
  • 批准号:
    1263572
  • 财政年份:
    2013
  • 资助金额:
    $ 74万
  • 项目类别:
    Continuing Grant
Coanda Effect for Incompressible Flows in Moving Domains
运动域中不可压缩流动的康达效应
  • 批准号:
    1109189
  • 财政年份:
    2011
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant
A New Finite Element Formulation of the Level Set Method for Free Boundary Problems
自由边界问题水平集法的新有限元公式
  • 批准号:
    1015002
  • 财政年份:
    2010
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant
Moving-boundary problems in blood flow
血流的移动边界问题
  • 批准号:
    0806941
  • 财政年份:
    2008
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 74万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344260
  • 财政年份:
    2024
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323649
  • 财政年份:
    2024
  • 资助金额:
    $ 74万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 74万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了