CAREER: Multijunction Organic: Inorganic Composite Solar Cells

职业:多结有机:无机复合太阳能电池

基本信息

  • 批准号:
    0449417
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-02-15 至 2010-01-31
  • 项目状态:
    已结题

项目摘要

In this career development plan, the PI outlines his initiatives to attract and retain students into the sciences and engineering and to improve teaching at the K-12, undergraduate and graduate level. These initiatives are closely tied to the PI's research efforts in organic photovoltaics, the broader socio-economical impact of which attracts a wider range of students and more likely inspires students who would otherwise shy away from engineering.The PI has committed to mentoring high school students and will hire a local full-time high school teacher every summer, aiming at transplanting some of the excitement of laboratory research to the high school classroom. He also proposes to offer extracurricular project and summer research opportunities to undergraduate students. These activities may stimulate students to pursue careers in science and engineering and the hands-on learning will result in better material assimilation and retention. The PI is engaged in curriculum revisions that are currently taking place in his department. He is committed to designing two fun, hands-on courses to attract students to electrical engineering and to offer creative design opportunities to senior students. Finally, the PI is co-writing a textbook on organic electronics.In the second part, the PI describes a research proposal that concentrates on developing a next generation of organic solar cells that can be produced at low-cost in a roll-to-roll fashion while exhibiting efficiencies approaching or exceeding those of crystalline silicon cells. This is in contrast with efficiencies of up to ~5% that characterize the state-of-the-art of the current generation of organic solar cells. To achieve the substantially higher efficiencies, the PI proposes to integrate several material systems into multifunction solar cell stacks by exploiting a major technological advantage of organic materials. In this approach, cells with different absorption characteristics are stacked and connected in series via ohmic contacts between adjacent cells. Using realistic assumptions, the achievable efficiency of a six-cell multijunction cell is estimated at21.4%, a two-fold improvement over the maximum efficiency of a single junction solar cell of 11.4% under the same assumptions.The proposed research program relies on core technologies that were recently developed such as cell stacking using metal nanoclusters and organic vapor phase deposition to realize the objective of demonstrating a multijunction solar cell with a power conversion efficiency exceeding 10%. To address the challenge of wide spectral coverage, organic / low bandgap inorganic semiconductor nanocrystal composite solar cells will be investigated. In addition, the complex optimization of multijunction cells will be addressed by experimentally calibrated, predictive computer models. Finally, a new deposition tool that is based on the organic vapor phase deposition method will be developed. This tool will be used for the deposition of composite organic/inorganic nanoparticle structures without disturbing the underlying layers. This unique capability will allow for the realization of the proposed multijunction structures. Firmly establishing the proposed research effort with the help of NSF funding over the next five years will put the PI's research group on the forefront of the organic electronics discipline.Intellectual MeritThe PI's career development plan includes innovative initiatives to attract and retain students in science and engineering that are reflections of the PI's personal experiences. The proposed research plan makes a clear case for a new generation of organic solar cells and a novel fabrication method. The plan is unique, innovative and timely and addresses an important scientific challenge. The PI's prior research accomplishments in organic photovoltaics form a strong foundation for the execution of the proposed research.Broader ImpactsThe successful demonstration of the proposed efficient organic / inorganic multijunction solar cells would represent a true breakthrough in the field of photovoltaics. These solar cells will be cheap, will exhibit high efficiencies, and will be manufactured without significant pollution. The socio-economical payoffs to society of such a renewable technology would be enormous in terms of reducing the emission of greenhouse gas and pollutants, reducing our dependence on oil reserves, creating new jobs and improving the image of science and engineering. This research effort is furthermore likely to attract a wider spectrum of students to science and engineering.
在这个职业发展计划中,PI概述了他的举措,以吸引和留住学生进入科学和工程,并改善在K-12,本科和研究生水平的教学。这些举措与PI在有机光化学方面的研究工作密切相关,其更广泛的社会经济影响吸引了更广泛的学生,更有可能激励那些否则会回避工程的学生。PI致力于指导高中生,并将在每年夏天聘请一名当地全职高中教师,旨在将实验室研究的一些兴奋点移植到高中课堂上。他还建议为本科生提供课外项目和暑期研究机会。这些活动可以刺激学生追求科学和工程事业,实践学习将导致更好的材料吸收和保留。PI正在参与他所在部门目前正在进行的课程修订。他致力于设计两个有趣的动手课程,以吸引学生电气工程,并提供创造性的设计机会,高年级学生。最后,PI正在与人合作编写有机电子学教科书。在第二部分中,PI介绍了一项研究计划,该计划致力于开发下一代有机太阳能电池,该电池可以以卷对卷的方式以低成本生产,同时表现出接近或超过晶体硅电池的效率。这与高达~5%的效率形成对比,该效率表征了当前一代有机太阳能电池的最新技术水平。为了实现更高的效率,PI建议通过利用有机材料的主要技术优势将几种材料系统集成到多功能太阳能电池堆中。在这种方法中,具有不同吸收特性的电池被堆叠并经由相邻电池之间的欧姆接触串联连接。使用现实的假设,六电池多结电池的可实现效率估计为21.4%,比单结太阳能电池11.4%的最大效率提高两倍在相同的假设下。拟议的研究计划依赖于最近开发的核心技术,如使用金属纳米团簇和有机气相沉积的电池堆叠,以实现演示功率转换效率超过10%的多结太阳能电池。为了解决宽光谱覆盖的挑战,将研究有机/低带隙无机半导体复合太阳能电池。此外,多结电池的复杂优化将通过实验校准,预测计算机模型来解决。最后,将开发一种基于有机气相沉积方法的新沉积工具。该工具将用于沉积复合有机/无机纳米颗粒结构,而不会干扰底层。这种独特的能力将允许实现所提出的多结结构。在NSF的资助下,在未来五年内坚定地建立拟议的研究工作,将使PI的研究小组走在有机电子学科的最前沿。智力优势PI的职业发展计划包括创新举措,以吸引和留住科学和工程专业的学生,这是PI个人经历的反映。拟议的研究计划为新一代有机太阳能电池和新的制造方法提供了明确的理由。该计划是独特的,创新的和及时的,并解决了一个重要的科学挑战。PI先前在有机光致发光方面的研究成果为执行拟议的研究奠定了坚实的基础。更广泛的影响拟议的高效有机/无机多结太阳能电池的成功演示将代表光致发光领域的真正突破。这些太阳能电池将是廉价的,将表现出高效率,并将在没有重大污染的情况下制造。这种可再生技术对社会的社会经济回报将是巨大的,可以减少温室气体和污染物的排放,减少我们对石油储备的依赖,创造新的就业机会,改善科学和工程的形象。这项研究工作还可能吸引更广泛的学生到科学和工程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Peumans其他文献

Peter Peumans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Peumans', 18)}}的其他基金

Improved Field-Effect Switches using Electron Bunching Mediated by Lattice Distortions
使用晶格畸变介导的电子聚束改进场效应开关
  • 批准号:
    0601734
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SST: Damage-Tolerant, Stretchable, and Reconfigurable Silicon-based Piezoelectric Sensor Networks For Structural and Medical Diagnostic Imaging
SST:用于结构和医学诊断成像的耐损伤、可拉伸和可重构的硅基压电传感器网络
  • 批准号:
    0529357
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NIRT: Ultra-high efficiency metal nanostructure-enhanced organic solar cells
NIRT:超高效率金属纳米结构增强有机太阳能电池
  • 批准号:
    0507301
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Silicon-based Multijunction Solar Cells
硅基多结太阳能电池
  • 批准号:
    552503-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Finite-Absorption-Bandwidth Nanomaterials for Multijunction Photovoltaics and Narrow-Band Photodetectors
职业:用于多结光伏和窄带光电探测器的有限吸收带宽纳米材料
  • 批准号:
    1846239
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Luminescent effects in multijunction photovoltaic devices
多结光伏器件中的发光效应
  • 批准号:
    18K04987
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of high efficiency optical wireless power transmission system using multijunction perovskite solar cells
使用多结钙钛矿太阳能电池开发高效光学无线电力传输系统
  • 批准号:
    17H03532
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAGER: Finite-Absorption-Bandwidth Materials for Cost-Effective Multijunction Photovoltaics
EAGER:用于经济高效的多结光伏的有限吸收带宽材料
  • 批准号:
    1743941
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Highly mismatched GaSb-GaAs thin film multijunction solar cells for high efficiency
合作研究:高度失配的 GaSb-GaAs 薄膜多结太阳能电池,实现高效率
  • 批准号:
    1509949
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Highly mismatched GaSb-GaAs thin film multijunction solar cells
合作研究:高度失配的GaSb-GaAs薄膜多结太阳能电池
  • 批准号:
    1509468
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER:Toward robust, scalable, and non-intermittent solar power: Silicon-based multijunction devices with integrated photocatalysis
职业:迈向稳健、可扩展和不间断的太阳能:具有集成光催化功能的硅基多结器件
  • 批准号:
    1150878
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Effects of bulk and surface defects in germanium on the performance of multijunction solar cells
锗体和表面缺陷对多结太阳能电池性能的影响
  • 批准号:
    417609-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Engage Grants Program
Direct-bond interconnection approach for fabricating multijunction photovoltaics
用于制造多结光伏电池的直接键合互连方法
  • 批准号:
    410905-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了