NIRT: Ultra-high efficiency metal nanostructure-enhanced organic solar cells

NIRT:超高效率金属纳米结构增强有机太阳能电池

基本信息

  • 批准号:
    0507301
  • 负责人:
  • 金额:
    $ 130万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

0507301PeumansThe PI proposes a new organic solar cell architecture that incorporates metal nanostructured antennae into the organic thin films. The metal nanostructures are used to concentrate the incident electromagnetic flux near the active interface of the organic donor-acceptor cells, resulting in increased absorption and exciton diffusion efficiencies. Furthermore, highly transparent nanopatterned metal films will be used as contacts in multijunction solar cell architectures. The high lateral conductivity of such nanopatterned metal films will allow for lateral photocurrent extraction in multijunction cells leading to a reduced sensitivity of the power conversion efficiency to the spectral content. Ultimately, this will lead to more efficient cell designs with power conversion efficiencies 20%. To fabricate the required organic-metal nanostructures, he will use a combination of templated and solution-phase synthesis to create monodisperse metallic nanostructures. These structures will subsequently be deposited using an aerosol technique, simultaneous with thermal evaporation of the organic molecules.Intellectual meritThe demonstration of efficient (20%) metal nanostructure enhanced multijunction PV cells would represent a true breakthrough in the field of photovoltaics. The availability of cheap, highly efficient PV cells, manufactured without significant pollution, will benefit society enormously in terms of reducing the emission of greenhouse gases and pollutants, reducing our dependence on oil reserves, creating new jobs and improving the image of science and engineering. In addition, the work on nanoscale organic-metal composite structures will help elucidate the fundamental limits of nanoscale metals in optical applications.Broader ImpactThe work proposed will lead to invaluable insight in the manufacturing of nanoscale features over large areas. The modeling tools, and characterization and fabrication techniques that the PI plans to develop will have broader applications in nanoscience and engineering. In addition, he will organize a yearly workshop on metal-organic nanocomposites, establish a high-school mentoring program, and involve undergraduate students in the research. The results of the proposed work will be incorporated in the televised course on Nanophotonics that is broadcast through the Stanford Center for Professional Development.
0507301PeumansPI提出了一种新的有机太阳能电池架构,将金属纳米结构天线整合到有机薄膜中。金属纳米结构被用来将入射的电磁通量集中在有机施主-受主电池的活性界面附近,从而提高了吸收和激子扩散的效率。此外,高度透明的纳米金属薄膜将被用作多结太阳能电池体系结构的触点。这种纳米金属薄膜的高横向电导率将允许在多结电池中横向提取光电流,从而降低了功率转换效率对光谱含量的敏感性。最终,这将导致更高效的电池设计,电力转换效率达到20%。为了制造所需的有机-金属纳米结构,他将使用模板化和溶液相合成相结合的方法来创建单分散的金属纳米结构。这些结构随后将使用气溶胶技术沉积,同时热蒸发有机分子。智慧价值高效(20%)金属纳米结构增强型多结光伏电池的展示将代表着光伏领域的真正突破。廉价、高效、无重大污染的光伏电池的出现,将在减少温室气体和污染物的排放、减少我们对石油储备的依赖、创造新的就业机会和改善科学和工程的形象方面极大地造福社会。此外,有关纳米级有机-金属复合结构的工作将有助于阐明纳米级金属在光学应用中的基本限制。广泛影响拟议的工作将在大面积制造纳米级特征方面带来宝贵的洞察力。PI计划开发的建模工具、表征和制造技术将在纳米科学和工程中有更广泛的应用。此外,他还将组织一次关于金属-有机纳米复合材料的年度研讨会,建立一个高中辅导计划,并让本科生参与研究。拟议工作的成果将被纳入通过斯坦福专业发展中心播出的纳米光子学电视课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Peumans其他文献

Peter Peumans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Peumans', 18)}}的其他基金

Improved Field-Effect Switches using Electron Bunching Mediated by Lattice Distortions
使用晶格畸变介导的电子聚束改进场效应开关
  • 批准号:
    0601734
  • 财政年份:
    2006
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
SST: Damage-Tolerant, Stretchable, and Reconfigurable Silicon-based Piezoelectric Sensor Networks For Structural and Medical Diagnostic Imaging
SST:用于结构和医学诊断成像的耐损伤、可拉伸和可重构的硅基压电传感器网络
  • 批准号:
    0529357
  • 财政年份:
    2005
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
CAREER: Multijunction Organic: Inorganic Composite Solar Cells
职业:多结有机:无机复合太阳能电池
  • 批准号:
    0449417
  • 财政年份:
    2005
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant

相似国自然基金

磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
  • 批准号:
    31471690
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
  • 批准号:
    60976066
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

An ultra-high efficiency Solar Energy solution for Sustainable Manufacturing
用于可持续制造的超高效率太阳能解决方案
  • 批准号:
    10073976
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
    Grant for R&D
Development of Si-based phase change materials at ultra-high temperature for high-efficiency thermal energy storage systems
开发用于高效热能存储系统的超高温硅基相变材料
  • 批准号:
    23KJ0032
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Optimizing Nanofiltration Membranes for Unprecedented Ultra-Fast Lithium Extraction
优化纳滤膜以实现前所未有的超快速锂提取
  • 批准号:
    23K19183
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Fundamentals of Laser Welding Coated Ultra-High Strength Press-Hardened Steels for Improving Automotive Safety and Efficiency
用于提高汽车安全性和效率的激光焊接涂层超高强度模压硬化钢的基础知识
  • 批准号:
    547491-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 130万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Photonic Crystal Based Ultra-Thin Flexible Single Crystalline Solar Cells: Towards 30% Conversion Efficiency
光子%20晶体%20基础%20超薄%20柔性%20单%20晶体%20太阳能%20电池:%20迈向%2030%%20转换%20效率
  • 批准号:
    546683-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 130万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Study on superconductor circuit with ultra-high power efficiency by introducing stochastic operation
引入随机操作的超高功率效率超导电路研究
  • 批准号:
    22H01542
  • 财政年份:
    2022
  • 资助金额:
    $ 130万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of an ultra-thin high efficiency photovoltaic power module for more secure smart cards
开发超薄高效光伏电源模块,实现更安全的智能卡
  • 批准号:
    10043174
  • 财政年份:
    2022
  • 资助金额:
    $ 130万
  • 项目类别:
    Collaborative R&D
ultra high power & torque density and ultra high efficiency electric propulsion for aviation
超高功率
  • 批准号:
    10043124
  • 财政年份:
    2022
  • 资助金额:
    $ 130万
  • 项目类别:
    Grant for R&D
Developing a High Efficiency, Ultra-Low Cost Zero-Carbon Pump
开发高效、超低成本零碳泵
  • 批准号:
    10046057
  • 财政年份:
    2022
  • 资助金额:
    $ 130万
  • 项目类别:
    Grant for R&D
Photonic Crystal Based Ultra-Thin Flexible Single Crystalline Solar Cells: Towards 30% Conversion Efficiency
光子%20晶体%20基础%20超薄%20柔性%20单%20晶体%20太阳能%20电池:%20迈向%2030%%20转换%20效率
  • 批准号:
    546683-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 130万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了