FRG: Collaborative Research: New Trends in Harmonic Analysis
FRG:协作研究:谐波分析的新趋势
基本信息
- 批准号:0456538
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for 0456538 Lacey, 0456306 Iosevich, and 0456490 MagyarThe proposed activity will focus a set of topics of current interest in Harmonic Analysis: the Kakeya conjecture, the Fourier restriction problem and Carleman estimates, the smoothing conjecture for the wave equation, and Zygmund's conjecture on the differentiation along Lipschitz families of lines. Equally central are newer questions that are being identified and studied, including the discrete analogues of classical operators, aspects of the Fuglede conjecture, Fourier integral operators with degenerate canonical relations and new classes of singular integrals in complex analysis. Past advances in these subjects have drawn influences from subjects such as Combinatorics, Additive Combinatorics, and Number Theory to name some prominent areas. In turn, these questions are making contributions to these same areas. The coordination of the efforts that this proposal will permit should accelerate advances on this broad range of topics. The proposed activities concern central questions that will result in new modes of analytical technique that bear on questions of, for instance, behavior of waves in higher dimensions, and different aspects of the subtle distinctions between discrete, i.e. digital, and continuous objects. In addition, the projects will draw upon methods and techniques from a range of different areas of mathematics. The breadth and sophistication of the analytical methods in the subject sheds new light on the interrelationships between these areas. It also can be an obstacle to continued research. This project has as an important of focus the training of graduate students and postdocs in these emerging areas of research, and the wide variety of techniques used in their analysis. These efforts will foster a next generation of mathematicians, critical to the nations scientific infrastructure.
0456538 LACEY,0456306 IOSEVICH和0456490 MAGYARTHE THE ASSUD活动的摘要将集中在谐波分析中当前兴趣的主题:Kakeya,Kakeya限制性问题和Carleman估计值,Wave方程和Zygmund的平滑猜想,以及Zygmund的平滑猜想。同样的核心是正在识别和研究的较新问题,包括经典运营商的离散类似物,fuglede猜想的各个方面,具有退化规范关系的傅立叶积分运算符以及复杂分析中的新类奇异积分类别。这些主题的过去进步受到了组合学,添加剂组合学和数字理论等主题的影响,以列举一些重要领域。 反过来,这些问题为这些相同领域做出了贡献。 该提案将允许的努力的协调应加速在这一广泛主题上的进步。拟议的活动涉及的主要问题将导致新的分析技术模式,这些技术在较高维度中的波浪行为以及离散(即数字和连续物体)之间微妙区别的不同方面存在问题。 此外,这些项目将利用来自各种数学领域的方法和技术。 对象中分析方法的广度和复杂性为这些领域之间的相互关系提供了新的启示。 这也可能是继续研究的障碍。 该项目非常重要,重点是在这些新兴研究领域的研究生和博士后的培训以及分析中使用的各种技术。这些努力将促进下一代数学家,这对国家科学基础设施至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Lacey其他文献
Sparse domination of singular integral operators
奇异积分算子的稀疏支配
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yumeng Ou;Alexander Barron;Michael Lacey;T. Luque;Betsy Stovall;Laura Cladek;G. Karagulyan;V. Naibo;Anh Neuman;R. Torres - 通讯作者:
R. Torres
COSTS OF PATIENTS WITH NONVALVULAR ATRIAL FIBRILLATION WHO HAVE BLEEDING EVENTS IN A LARGE MANAGED CARE POPULATION
- DOI:
10.1016/s0735-1097(13)61575-2 - 发表时间:
2013-03-12 - 期刊:
- 影响因子:
- 作者:
Steven Deitelzweig;Brett Pinsky;Erin Buysman;Michael Lacey;Yonghua Jing;Daniel Wiederkehr;John Graham - 通讯作者:
John Graham
Weighted Bounds for Variational Walsh–Fourier Series
变分沃尔什-傅立叶级数的加权界限
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:1.2
- 作者:
Yen Q. Do;Michael Lacey - 通讯作者:
Michael Lacey
REAL WORLD EVALUATION OF ACUTE CHEST PAIN IN THE EMERGENCY DEPARTMENT: RELATIVE VALUE OF STRESS MYOCARDIAL PERFUSION IMAGING VERSUS EXERCISE TREADMILL TESTING
- DOI:
10.1016/s0735-1097(12)60510-5 - 发表时间:
2012-03-27 - 期刊:
- 影响因子:
- 作者:
John Mahmarian;Tanya Burton;Michael Lacey;James Spalding - 通讯作者:
James Spalding
Michael Lacey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Lacey', 18)}}的其他基金
Sparse Bounds and Improving Estimates, Continuous and Discrete
稀疏界限和改进估计,连续和离散
- 批准号:
1949206 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
REU Site: Georgia Institute of Technology Mathematics Research Experiences for Undergraduates
REU 网站:佐治亚理工学院本科生数学研究经验
- 批准号:
1851843 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Discrete Problems in Harmonic Analysis and One Bit Sensing
谐波分析和一位传感中的离散问题
- 批准号:
1600693 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
Two Weight Inequalities for Singular Integrals
奇异积分的两个权重不等式
- 批准号:
1265570 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Problems in Weighted Inequalities, Phase Plane Analysis
加权不等式、相平面分析中的问题
- 批准号:
0968499 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
Special Meeting: CRM Special Semester on Harmonic analysis, Geometric Measure Theory and Quasiconformal Mappings
特别会议:CRM调和分析、几何测度理论和拟共形映射特别学期
- 批准号:
0902259 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
EMSW21-MCTP: A Georgia Tech Plan for Recruiting and Mentoring Undergraduates in Mathematics
EMSW21-MCTP:佐治亚理工学院数学本科生招募和指导计划
- 批准号:
0739343 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Special Meeting: Fields Program on New Trends in Harmonic Analysis - International U.S. Participation
特别会议:谐波分析新趋势领域计划 - 美国国际参与
- 批准号:
0648811 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant