FRG: Collaborative Research: New Trends in Harmonic Analysis

FRG:协作研究:谐波分析的新趋势

基本信息

  • 批准号:
    0456538
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

Abstract for 0456538 Lacey, 0456306 Iosevich, and 0456490 MagyarThe proposed activity will focus a set of topics of current interest in Harmonic Analysis: the Kakeya conjecture, the Fourier restriction problem and Carleman estimates, the smoothing conjecture for the wave equation, and Zygmund's conjecture on the differentiation along Lipschitz families of lines. Equally central are newer questions that are being identified and studied, including the discrete analogues of classical operators, aspects of the Fuglede conjecture, Fourier integral operators with degenerate canonical relations and new classes of singular integrals in complex analysis. Past advances in these subjects have drawn influences from subjects such as Combinatorics, Additive Combinatorics, and Number Theory to name some prominent areas. In turn, these questions are making contributions to these same areas. The coordination of the efforts that this proposal will permit should accelerate advances on this broad range of topics. The proposed activities concern central questions that will result in new modes of analytical technique that bear on questions of, for instance, behavior of waves in higher dimensions, and different aspects of the subtle distinctions between discrete, i.e. digital, and continuous objects. In addition, the projects will draw upon methods and techniques from a range of different areas of mathematics. The breadth and sophistication of the analytical methods in the subject sheds new light on the interrelationships between these areas. It also can be an obstacle to continued research. This project has as an important of focus the training of graduate students and postdocs in these emerging areas of research, and the wide variety of techniques used in their analysis. These efforts will foster a next generation of mathematicians, critical to the nations scientific infrastructure.
摘要0456538莱西,0456306 Iosevich,和0456490 MagyarThe拟议的活动将集中在一组主题的当前利益调和分析:挂谷猜想,傅立叶限制问题和Carleman估计,平滑猜想的波动方程,和Zygmund的猜想上的分化沿着Lipschitz家庭的线。同样重要的是新的问题,正在确定和研究,包括离散类似的经典运营商,方面的Fuglede猜想,傅立叶积分运营商与退化的典型关系和新的类奇异积分在复杂的分析。这些学科过去的进展已经受到组合学、加法组合学和数论等学科的影响。 反过来,这些问题也对这些领域做出了贡献。 协调这项建议所允许的各种努力,应能加快在这一广泛议题上取得进展。拟议的活动涉及的核心问题,将导致新的模式的分析技术,承担的问题,例如,行为的波在更高的维度,和不同方面的微妙区别之间的离散,即数字,和连续的对象。 此外,这些项目将借鉴数学的一系列不同领域的方法和技术。 该主题分析方法的广度和复杂性为这些领域之间的相互关系提供了新的视角。 它也可能成为继续研究的障碍。 该项目的一个重要重点是在这些新兴的研究领域培训研究生和博士后,以及在分析中使用的各种技术。这些努力将培养下一代数学家,这对国家的科学基础设施至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Lacey其他文献

Sparse domination of singular integral operators
奇异积分算子的稀疏支配
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yumeng Ou;Alexander Barron;Michael Lacey;T. Luque;Betsy Stovall;Laura Cladek;G. Karagulyan;V. Naibo;Anh Neuman;R. Torres
  • 通讯作者:
    R. Torres
On the discrepancy function in arbitrary dimension, close to L 1
  • DOI:
    10.1007/s10476-008-0203-9
  • 发表时间:
    2008-09-20
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Michael Lacey
  • 通讯作者:
    Michael Lacey
Schatten classes and commutators of Riesz transforms in the two weight setting
双权情形下里斯变换的阴影类与交换子
  • DOI:
    10.1016/j.jfa.2025.111028
  • 发表时间:
    2025-09-15
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Michael Lacey;Ji Li;Brett D. Wick;Liangchuan Wu
  • 通讯作者:
    Liangchuan Wu
On almost sure noncentral limit theorems
B cell–derived exosomal miR-483-5p and its potential role in promoting kidney function loss in IgA nephropathy
B 细胞衍生的外泌体 miR-483-5p 及其在促进 IgA 肾病肾功能丧失中的潜在作用
  • DOI:
    10.1016/j.kint.2025.03.019
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    12.600
  • 作者:
    Izabella Z.A. Pawluczyk;Jasraj S. Bhachu;Jeremy R. Brown;Michael Lacey;Chidimma Mbadugha;Kees Straatman;David Wimbury;Haresh Selvaskandan;Jonathan Barratt
  • 通讯作者:
    Jonathan Barratt

Michael Lacey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Lacey', 18)}}的其他基金

Topics in Discrete Harmonic Analysis
离散谐波分析主题
  • 批准号:
    2247254
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Sparse Bounds and Improving Estimates, Continuous and Discrete
稀疏界限和改进估计,连续和离散
  • 批准号:
    1949206
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: Georgia Institute of Technology Mathematics Research Experiences for Undergraduates
REU 网站:佐治亚理工学院本科生数学研究经验
  • 批准号:
    1851843
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Discrete Problems in Harmonic Analysis and One Bit Sensing
谐波分析和一位传感中的离散问题
  • 批准号:
    1600693
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Two Weight Inequalities for Singular Integrals
奇异积分的两个权重不等式
  • 批准号:
    1265570
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Problems in Weighted Inequalities, Phase Plane Analysis
加权不等式、相平面分析中的问题
  • 批准号:
    0968499
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Special Meeting: CRM Special Semester on Harmonic analysis, Geometric Measure Theory and Quasiconformal Mappings
特别会议:CRM调和分析、几何测度理论和拟共形映射特别学期
  • 批准号:
    0902259
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EMSW21-MCTP: A Georgia Tech Plan for Recruiting and Mentoring Undergraduates in Mathematics
EMSW21-MCTP:佐治亚理工学院数学本科生招募和指导计划
  • 批准号:
    0739343
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Special Meeting: Fields Program on New Trends in Harmonic Analysis - International U.S. Participation
特别会议:谐波分析新趋势领域计划 - 美国国际参与
  • 批准号:
    0648811
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigations in Harmonic Analysis
谐波分析研究
  • 批准号:
    0456611
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了