Discrete Problems in Harmonic Analysis and One Bit Sensing
谐波分析和一位传感中的离散问题
基本信息
- 批准号:1600693
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-15 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
On the one hand, this project will advance one's understanding of currently important topics in signal processing, and on the other, it will stimulate interactions between two central areas of mathematics, analysis and number theory. In signal processing, so-called one-bit sensing replaces the usual linear measurements of a signal by incorporating the sign of the measurement. There are two motivations for this. First, the sign function is a basic type of nonlinearity, so results about it can represent a first step towards relaxing linearity in a number of significant settings. Second, in an important technological development, one-bit measurements can be done very frequently. Surprising experiments are using new methods that need theoretical justification, and in this context one-bit measurements have proven to be just as effective as linear ones. Topics in compressive sensing have an intimate relationship to questions in discrepancy theory, with one-bit sensing being the easiest place to uncover this relationship. This raises a new set of questions in discrepancy theory, and brings to compressive sensing new techniques. In particular, there are new tools to study lower bounds in the subject, which can reveal how effective the current random techniques are. Also, it can provide new approaches to sampling, such as the semi-random jittered sampling. In analysis and number theory, the project will study discrete variants of maximal oscillatory singular integrals. The latter, in the continuous case, are already fascinating objects. Passing to the discrete variants entails many additional complications that arise from subtle arithmetic structures. The results established in the project will be the first of this type, hence will require novel techniques. The new approach is a synthesis of breakthrough results of Bourgain and elemental methods in phase-plane analysis.
一方面,该项目将促进人们对信号处理中当前重要主题的理解,另一方面,它将刺激数学,分析和数论两个中心领域之间的相互作用。在信号处理中,所谓的一位感测通过结合测量的符号来取代信号的通常线性测量。这样做有两个动机。 首先,符号函数是非线性的一种基本类型,因此关于它的结果可以代表在许多重要设置中放松线性的第一步。第二,在重要的技术发展中,一位测量可以非常频繁地进行。令人惊讶的实验正在使用需要理论证明的新方法,在这种情况下,一位测量已被证明与线性测量一样有效。 压缩感知中的主题与差异理论中的问题有着密切的关系,一位感知是揭示这种关系的最简单的地方。 这在差异理论中提出了一系列新的问题,并为压缩感知带来了新的技术。 特别是,有新的工具来研究该主题的下界,这可以揭示当前随机技术的有效性。同时,它还可以提供新的采样方法,如半随机抖动采样。 在分析和数论中,该项目将研究最大振荡奇异积分的离散变量。后者,在连续的情况下,已经是迷人的对象。 传递到离散变量需要许多额外的复杂性,这些复杂性来自于微妙的算术结构。 在该项目中建立的结果将是第一个这种类型的,因此将需要新的技术。 这种新方法综合了布尔甘方法和元素方法在相平面分析中的突破性成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Lacey其他文献
Sparse domination of singular integral operators
奇异积分算子的稀疏支配
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yumeng Ou;Alexander Barron;Michael Lacey;T. Luque;Betsy Stovall;Laura Cladek;G. Karagulyan;V. Naibo;Anh Neuman;R. Torres - 通讯作者:
R. Torres
On the discrepancy function in arbitrary dimension, close to L 1
- DOI:
10.1007/s10476-008-0203-9 - 发表时间:
2008-09-20 - 期刊:
- 影响因子:0.500
- 作者:
Michael Lacey - 通讯作者:
Michael Lacey
Schatten classes and commutators of Riesz transforms in the two weight setting
双权情形下里斯变换的阴影类与交换子
- DOI:
10.1016/j.jfa.2025.111028 - 发表时间:
2025-09-15 - 期刊:
- 影响因子:1.600
- 作者:
Michael Lacey;Ji Li;Brett D. Wick;Liangchuan Wu - 通讯作者:
Liangchuan Wu
On almost sure noncentral limit theorems
- DOI:
10.1007/bf01259554 - 发表时间:
1991-10-01 - 期刊:
- 影响因子:0.600
- 作者:
Michael Lacey - 通讯作者:
Michael Lacey
B cell–derived exosomal miR-483-5p and its potential role in promoting kidney function loss in IgA nephropathy
B 细胞衍生的外泌体 miR-483-5p 及其在促进 IgA 肾病肾功能丧失中的潜在作用
- DOI:
10.1016/j.kint.2025.03.019 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:12.600
- 作者:
Izabella Z.A. Pawluczyk;Jasraj S. Bhachu;Jeremy R. Brown;Michael Lacey;Chidimma Mbadugha;Kees Straatman;David Wimbury;Haresh Selvaskandan;Jonathan Barratt - 通讯作者:
Jonathan Barratt
Michael Lacey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Lacey', 18)}}的其他基金
Sparse Bounds and Improving Estimates, Continuous and Discrete
稀疏界限和改进估计,连续和离散
- 批准号:
1949206 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
REU Site: Georgia Institute of Technology Mathematics Research Experiences for Undergraduates
REU 网站:佐治亚理工学院本科生数学研究经验
- 批准号:
1851843 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Two Weight Inequalities for Singular Integrals
奇异积分的两个权重不等式
- 批准号:
1265570 - 财政年份:2013
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Problems in Weighted Inequalities, Phase Plane Analysis
加权不等式、相平面分析中的问题
- 批准号:
0968499 - 财政年份:2010
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Special Meeting: CRM Special Semester on Harmonic analysis, Geometric Measure Theory and Quasiconformal Mappings
特别会议:CRM调和分析、几何测度理论和拟共形映射特别学期
- 批准号:
0902259 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
EMSW21-MCTP: A Georgia Tech Plan for Recruiting and Mentoring Undergraduates in Mathematics
EMSW21-MCTP:佐治亚理工学院数学本科生招募和指导计划
- 批准号:
0739343 - 财政年份:2008
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Special Meeting: Fields Program on New Trends in Harmonic Analysis - International U.S. Participation
特别会议:谐波分析新趋势领域计划 - 美国国际参与
- 批准号:
0648811 - 财政年份:2007
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Trends in Harmonic Analysis
FRG:协作研究:谐波分析的新趋势
- 批准号:
0456538 - 财政年份:2005
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似海外基金
Problems in Harmonic Analysis Relating to Curvature
与曲率相关的谐波分析问题
- 批准号:
2246906 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
- 批准号:
RGPIN-2021-03545 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
International Conference on Microlocal Analysis, Harmonic Analysis, and Inverse Problems
微局域分析、调和分析和反问题国际会议
- 批准号:
2154480 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
- 批准号:
RGPIN-2021-03545 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Problems in harmonic analysis: decoupling and Bourgain-Brezis inequalities
调和分析中的问题:解耦和布尔干-布雷齐斯不等式
- 批准号:
FT200100399 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
ARC Future Fellowships
Optimized Schwarz methods for time-harmonic wave problems in resonating cavities
谐振腔时谐波问题的优化 Schwarz 方法
- 批准号:
445906998 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Research Grants
Harmonic Analysis, Boundary Value Problems, and Parabolic Rectifiability
谐波分析、边值问题和抛物线可整流性
- 批准号:
2000048 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
- 批准号:
RGPIN-2015-04007 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
- 批准号:
RGPIN-2015-04007 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual