Sparse Bounds and Improving Estimates, Continuous and Discrete
稀疏界限和改进估计,连续和离散
基本信息
- 批准号:1949206
- 负责人:
- 金额:$ 29.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Averaging always smooths out, or improves, functions or data. In the continuous case, this phenomena has been intensively studied for decades. If we average over objects in a discrete setting like the integers, or some other high dimensional lattice, the smoothing properties of the average have only recently started to be studied. A natural object to study is the average over a discrete sphere in a five dimensional lattice. The proof that the average improves functions engages a range of deep aspects within number theory and analysis. However, resolving the natural limits for this question still seem difficult. In this project, these questions will be explored in a setting that involves both continuous and discrete phenomena. These questions are also elementary to state, which makes them amenable for mentoring programs, from undergraduate through postdoctoral levels. An improving inequality in the continuous setting has been widely studied since the 1970's. However, the corresponding questions in the discrete setting have only just attracted attention. For instance, averages over the discrete sphere in the d-dimensional integers, with d at least 5, have a rich theory of improving inequalities, paralleling the much better known continuous case. The proofs however involve complications arising from multi-frequency analysis, as well as fine estimates on Kloosterman sums. There is a richer theory, the outlines of which are appearing, giving a sharp range of inequalities for some arithmetic varieties. This subject also allows for the proof of certain sparse bounds. The latter are scale-free versions of the improving inequalities. A sparse bound immediately implies other weighted and vector valued consequences. The latter are new in this subject. These questions reveal new aspects of these averaging operators, and require new modes of investigation, deepening the connection between harmonic analysis and number theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
求平均值总是平滑或改进函数或数据。 在连续的情况下,这种现象已经被深入研究了几十年。如果我们对离散设置中的对象(如整数或其他高维格)进行平均,则平均值的平滑特性直到最近才开始研究。 一个自然的研究对象是在一个五维格子离散球的平均。证明平均值可以改善函数涉及数论和分析中的一系列深层次问题。然而,解决这个问题的自然限制似乎仍然很困难。在这个项目中,这些问题将在涉及连续和离散现象的环境中进行探索。 这些问题也是基本的状态,这使得他们适合辅导计划,从本科到博士后水平。 自20世纪70年代以来,连续环境下的改进不等式得到了广泛的研究。然而,在离散设置中的相应问题才刚刚引起注意。例如,d维整数(d至少为5)的离散球面上的平均值有丰富的改进不等式的理论,类似于更好地了解连续的情况。 然而,证据涉及多频分析所产生的并发症,以及Kloosterman总和的精细估计。有一个更丰富的理论,其轮廓正在出现,为一些算术变种提供了一个尖锐的不等式范围。 这个主题也允许某些稀疏界限的证明。后者是改进的不平等的无标度版本。一个稀疏的界限立即意味着其他加权和向量值的后果。 后者在这个问题上是新的。这些问题揭示了这些平均算子的新方面,并需要新的调查模式,加深谐波分析和数论之间的联系。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Endpoint $\ell^r$ improving estimates for prime averages
端点 $ell^r$ 改进了素数平均值的估计
- DOI:10.4310/mrl.2022.v29.n6.a6
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Lacey, Michael T.;Mousavi, Hamed;Rahimi, Yaghoub
- 通讯作者:Rahimi, Yaghoub
Compactness of commutator of Riesz transforms in the two weight setting
- DOI:10.1016/j.jmaa.2021.125869
- 发表时间:2020-10
- 期刊:
- 影响因子:1.3
- 作者:M. Lacey;Ji Li
- 通讯作者:M. Lacey;Ji Li
Schatten Classes and Commutators of Riesz Transform on Heisenberg Group and Applications
- DOI:10.1007/s00041-023-09995-1
- 发表时间:2021-07
- 期刊:
- 影响因子:1.2
- 作者:Zhijie Fan;Michael Lacey;Ji Li
- 通讯作者:Zhijie Fan;Michael Lacey;Ji Li
On the convergence of multiple ergodic means
关于多重遍历均值的收敛性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0.6
- 作者:Karagulyan, Grigori A.;Lacey, Michael T.;Martirosyan, Vahan A
- 通讯作者:Martirosyan, Vahan A
Commutators of Cauchy-Szego type integrals for domains in C^n with minimal smoothness
- DOI:10.1512/iumj.2021.70.8573
- 发表时间:2021
- 期刊:
- 影响因子:1.1
- 作者:X. Duong;M. Lacey;Ji Li;B. Wick;Qingyan Wu
- 通讯作者:X. Duong;M. Lacey;Ji Li;B. Wick;Qingyan Wu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Lacey其他文献
Sparse domination of singular integral operators
奇异积分算子的稀疏支配
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yumeng Ou;Alexander Barron;Michael Lacey;T. Luque;Betsy Stovall;Laura Cladek;G. Karagulyan;V. Naibo;Anh Neuman;R. Torres - 通讯作者:
R. Torres
On the discrepancy function in arbitrary dimension, close to L 1
- DOI:
10.1007/s10476-008-0203-9 - 发表时间:
2008-09-20 - 期刊:
- 影响因子:0.500
- 作者:
Michael Lacey - 通讯作者:
Michael Lacey
Schatten classes and commutators of Riesz transforms in the two weight setting
双权情形下里斯变换的阴影类与交换子
- DOI:
10.1016/j.jfa.2025.111028 - 发表时间:
2025-09-15 - 期刊:
- 影响因子:1.600
- 作者:
Michael Lacey;Ji Li;Brett D. Wick;Liangchuan Wu - 通讯作者:
Liangchuan Wu
On almost sure noncentral limit theorems
- DOI:
10.1007/bf01259554 - 发表时间:
1991-10-01 - 期刊:
- 影响因子:0.600
- 作者:
Michael Lacey - 通讯作者:
Michael Lacey
COSTS OF PATIENTS WITH NONVALVULAR ATRIAL FIBRILLATION WHO HAVE BLEEDING EVENTS IN A LARGE MANAGED CARE POPULATION
- DOI:
10.1016/s0735-1097(13)61575-2 - 发表时间:
2013-03-12 - 期刊:
- 影响因子:
- 作者:
Steven Deitelzweig;Brett Pinsky;Erin Buysman;Michael Lacey;Yonghua Jing;Daniel Wiederkehr;John Graham - 通讯作者:
John Graham
Michael Lacey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Lacey', 18)}}的其他基金
REU Site: Georgia Institute of Technology Mathematics Research Experiences for Undergraduates
REU 网站:佐治亚理工学院本科生数学研究经验
- 批准号:
1851843 - 财政年份:2019
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
Discrete Problems in Harmonic Analysis and One Bit Sensing
谐波分析和一位传感中的离散问题
- 批准号:
1600693 - 财政年份:2016
- 资助金额:
$ 29.77万 - 项目类别:
Continuing Grant
Two Weight Inequalities for Singular Integrals
奇异积分的两个权重不等式
- 批准号:
1265570 - 财政年份:2013
- 资助金额:
$ 29.77万 - 项目类别:
Continuing Grant
Problems in Weighted Inequalities, Phase Plane Analysis
加权不等式、相平面分析中的问题
- 批准号:
0968499 - 财政年份:2010
- 资助金额:
$ 29.77万 - 项目类别:
Continuing Grant
Special Meeting: CRM Special Semester on Harmonic analysis, Geometric Measure Theory and Quasiconformal Mappings
特别会议:CRM调和分析、几何测度理论和拟共形映射特别学期
- 批准号:
0902259 - 财政年份:2009
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
EMSW21-MCTP: A Georgia Tech Plan for Recruiting and Mentoring Undergraduates in Mathematics
EMSW21-MCTP:佐治亚理工学院数学本科生招募和指导计划
- 批准号:
0739343 - 财政年份:2008
- 资助金额:
$ 29.77万 - 项目类别:
Continuing Grant
Special Meeting: Fields Program on New Trends in Harmonic Analysis - International U.S. Participation
特别会议:谐波分析新趋势领域计划 - 美国国际参与
- 批准号:
0648811 - 财政年份:2007
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Trends in Harmonic Analysis
FRG:协作研究:谐波分析的新趋势
- 批准号:
0456538 - 财政年份:2005
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Lower Bounds for Shallow Circuits
职业生涯:浅层电路的下限
- 批准号:
2338730 - 财政年份:2024
- 资助金额:
$ 29.77万 - 项目类别:
Continuing Grant
Complexity Lower Bounds from Expansion
扩展带来的复杂性下限
- 批准号:
23K16837 - 财政年份:2023
- 资助金额:
$ 29.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Non-parametric estimation under covariate shift: From fundamental bounds to efficient algorithms
协变量平移下的非参数估计:从基本界限到高效算法
- 批准号:
2311072 - 财政年份:2023
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
Tighter error bounds for representation learning and lifelong learning
表征学习和终身学习的更严格的误差范围
- 批准号:
RGPIN-2018-03942 - 财政年份:2022
- 资助金额:
$ 29.77万 - 项目类别:
Discovery Grants Program - Individual
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2022
- 资助金额:
$ 29.77万 - 项目类别:
Discovery Grants Program - Individual
Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
- 批准号:
RGPIN-2019-05543 - 财政年份:2022
- 资助金额:
$ 29.77万 - 项目类别:
Discovery Grants Program - Individual
Bringing upper and lower bounds closer in computational geometry
使计算几何中的上限和下限更加接近
- 批准号:
567959-2022 - 财政年份:2022
- 资助金额:
$ 29.77万 - 项目类别:
Postgraduate Scholarships - Doctoral
Lower bounds on ranks of nontrivial toric vector bundles
非平凡环面向量丛的秩下界
- 批准号:
558713-2021 - 财政年份:2022
- 资助金额:
$ 29.77万 - 项目类别:
Postgraduate Scholarships - Doctoral
Extremal Combinatorics Exact Bounds
极值组合精确界
- 批准号:
574168-2022 - 财政年份:2022
- 资助金额:
$ 29.77万 - 项目类别:
University Undergraduate Student Research Awards
AF: Small: New Techniques for Optimal Bounds on MCMC Algorithms
AF:小:MCMC 算法最优边界的新技术
- 批准号:
2147094 - 财政年份:2022
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant