Two Weight Inequalities for Singular Integrals
奇异积分的两个权重不等式
基本信息
- 批准号:1265570
- 负责人:
- 金额:$ 32.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-15 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This mathematics research project by Michael Lacey is in the general area of harmonic analysis. The Shannon Sampling Theorem asserts that a function in the Paley-Wiener class can be recovered by its values at the integers. This foundational fact has many quantifications, and extensions. Among the most delicate is to what extent the integers can be replaced by other discrete sets: For which other sets is sampling also well behaved. In the square-integrable case, this is just one instance of the profound two-weight inequality for the Hilbert transform. It asks for a real-variable characterization of those pairs of measures on the real line for which the Hilbert transform is bounded between the Hilbert spaces associated with the pair of measures (weights). Lacey has recently solved this problem, in complete generality. This and a family of related extensions will be under investigation by Lacey.This mathematics research project by Michael Lacey is in the field of harmonic analysis, which has deep applications to other fields such as engineering, for instance to signal transmission. The hallmark of transmission of information is rapid and regular sampling of a signal, followed by a synthesis of the samples into, for instance, a voice conversation over a cell phone. The system is robust, with small perturbations of the sampling not affecting the synthesis, in part because the most obvious problems with the sampling are all accounted for. The abstraction of this sampling leads to fascinating mathematical problems: A dramatic oversampling of the signal increases the observed energy. How bad can the oversampling become, while preserving the energy of the signal? Just how degenerate of a sampling is permitted before the signal is lost? Lacey has provided a mathematical solution to the first problem, an advance that will open the door to a range of related questions. These techniques, disseminated across fields of science and engineering, will impact the underlying theories of sampling and information. Some of the problems in this project will be studied by Ph.D. students under Lacey's direction.
迈克尔·莱西的这项数学研究项目属于调和分析的一般领域。香农抽样定理断言,Paley-Wiener类中的函数可以通过它在整数处的值恢复。这一基本事实有许多量化和延伸。其中最微妙的问题是整数可以在多大程度上被其他离散集取代:对于哪些其他集也表现良好。在平方可积的情况下,这只是希尔伯特变换的深刻的双权不等式的一个例子。它要求对实线上希尔伯特变换在与该度量对(权重)相关联的希尔伯特空间之间有界的那些度量对进行实变量表征。莱西最近完全笼统地解决了这个问题。迈克尔·莱西的这一数学研究项目是在调和分析领域进行的,该领域在其他领域有深入的应用,如工程,例如信号传输。信息传输的特点是快速而有规律地对信号进行采样,然后将采样合成为例如通过手机进行的语音交谈。该系统是稳健的,采样的微小扰动不会影响合成,部分原因是采样最明显的问题都被考虑在内。这种采样的抽象导致了有趣的数学问题:信号的戏剧性过采样增加了观察到的能量。在保留信号能量的同时,过采样会变得多糟糕?在信号丢失之前,究竟允许多大程度的采样退化?莱西为第一个问题提供了一个数学解决方案,这一进步将为一系列相关问题打开大门。这些技术在科学和工程领域传播,将影响抽样和信息的基本理论。这个项目中的一些问题将由博士生在莱西的指导下进行研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Lacey其他文献
Sparse domination of singular integral operators
奇异积分算子的稀疏支配
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yumeng Ou;Alexander Barron;Michael Lacey;T. Luque;Betsy Stovall;Laura Cladek;G. Karagulyan;V. Naibo;Anh Neuman;R. Torres - 通讯作者:
R. Torres
On the discrepancy function in arbitrary dimension, close to L 1
- DOI:
10.1007/s10476-008-0203-9 - 发表时间:
2008-09-20 - 期刊:
- 影响因子:0.500
- 作者:
Michael Lacey - 通讯作者:
Michael Lacey
Schatten classes and commutators of Riesz transforms in the two weight setting
双权情形下里斯变换的阴影类与交换子
- DOI:
10.1016/j.jfa.2025.111028 - 发表时间:
2025-09-15 - 期刊:
- 影响因子:1.600
- 作者:
Michael Lacey;Ji Li;Brett D. Wick;Liangchuan Wu - 通讯作者:
Liangchuan Wu
On almost sure noncentral limit theorems
- DOI:
10.1007/bf01259554 - 发表时间:
1991-10-01 - 期刊:
- 影响因子:0.600
- 作者:
Michael Lacey - 通讯作者:
Michael Lacey
COSTS OF PATIENTS WITH NONVALVULAR ATRIAL FIBRILLATION WHO HAVE BLEEDING EVENTS IN A LARGE MANAGED CARE POPULATION
- DOI:
10.1016/s0735-1097(13)61575-2 - 发表时间:
2013-03-12 - 期刊:
- 影响因子:
- 作者:
Steven Deitelzweig;Brett Pinsky;Erin Buysman;Michael Lacey;Yonghua Jing;Daniel Wiederkehr;John Graham - 通讯作者:
John Graham
Michael Lacey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Lacey', 18)}}的其他基金
Sparse Bounds and Improving Estimates, Continuous and Discrete
稀疏界限和改进估计,连续和离散
- 批准号:
1949206 - 财政年份:2020
- 资助金额:
$ 32.7万 - 项目类别:
Standard Grant
REU Site: Georgia Institute of Technology Mathematics Research Experiences for Undergraduates
REU 网站:佐治亚理工学院本科生数学研究经验
- 批准号:
1851843 - 财政年份:2019
- 资助金额:
$ 32.7万 - 项目类别:
Standard Grant
Discrete Problems in Harmonic Analysis and One Bit Sensing
谐波分析和一位传感中的离散问题
- 批准号:
1600693 - 财政年份:2016
- 资助金额:
$ 32.7万 - 项目类别:
Continuing Grant
Problems in Weighted Inequalities, Phase Plane Analysis
加权不等式、相平面分析中的问题
- 批准号:
0968499 - 财政年份:2010
- 资助金额:
$ 32.7万 - 项目类别:
Continuing Grant
Special Meeting: CRM Special Semester on Harmonic analysis, Geometric Measure Theory and Quasiconformal Mappings
特别会议:CRM调和分析、几何测度理论和拟共形映射特别学期
- 批准号:
0902259 - 财政年份:2009
- 资助金额:
$ 32.7万 - 项目类别:
Standard Grant
EMSW21-MCTP: A Georgia Tech Plan for Recruiting and Mentoring Undergraduates in Mathematics
EMSW21-MCTP:佐治亚理工学院数学本科生招募和指导计划
- 批准号:
0739343 - 财政年份:2008
- 资助金额:
$ 32.7万 - 项目类别:
Continuing Grant
Special Meeting: Fields Program on New Trends in Harmonic Analysis - International U.S. Participation
特别会议:谐波分析新趋势领域计划 - 美国国际参与
- 批准号:
0648811 - 财政年份:2007
- 资助金额:
$ 32.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Trends in Harmonic Analysis
FRG:协作研究:谐波分析的新趋势
- 批准号:
0456538 - 财政年份:2005
- 资助金额:
$ 32.7万 - 项目类别:
Standard Grant
相似国自然基金
水稻Fruit-Weight2.2-Like 2(OsFWL2)基因在镉胁迫中的功能研究
- 批准号:2020JJ4049
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Fano流形的moment-weight等式及Mabuchi度量的存在性
- 批准号:11801156
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
LITEFLOATCON: Light-Weight High Performance Concrete for Modular Floating Structures
LITEFLOATCON:用于模块化浮动结构的轻质高性能混凝土
- 批准号:
EP/Y036131/1 - 财政年份:2024
- 资助金额:
$ 32.7万 - 项目类别:
Research Grant
RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
- 批准号:
2908868 - 财政年份:2024
- 资助金额:
$ 32.7万 - 项目类别:
Studentship
A computational weight of evidence platform to understand critical fish specific biology mediating toxicologically relevant responses to stress
证据平台的计算权重,用于了解介导毒理学相关应激反应的关键鱼类特定生物学
- 批准号:
BB/Y512564/1 - 财政年份:2024
- 资助金额:
$ 32.7万 - 项目类别:
Training Grant
A computational weight of evidence platform to understand critical fish specific biology mediating toxicologically relevant responses to stress
证据平台的计算权重,用于了解介导毒理学相关应激反应的关键鱼类特定生物学
- 批准号:
2905575 - 财政年份:2024
- 资助金额:
$ 32.7万 - 项目类别:
Studentship
Doctoral Dissertation Research: Assessing weight-gain tendencies in a non-human primates
博士论文研究:评估非人类灵长类动物的体重增加趋势
- 批准号:
2341173 - 财政年份:2024
- 资助金额:
$ 32.7万 - 项目类别:
Standard Grant
LITEFLOATCON: Light-Weight High Performance Concrete for Modular Floating Structures
LITEFLOATCON:用于模块化浮动结构的轻质高性能混凝土
- 批准号:
EP/Y036190/1 - 财政年份:2024
- 资助金额:
$ 32.7万 - 项目类别:
Research Grant
Development of magnetic coated rectangular wire for reducing AC copper loss and reducing size and weight of transformers and inductors
开发磁性涂层矩形线,以减少交流铜损并减小变压器和电感器的尺寸和重量
- 批准号:
23H01397 - 财政年份:2023
- 资助金额:
$ 32.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The impact of maternal lifestyle and psychosocial factors on neonatal birth weight in Sri Lanka
斯里兰卡母亲生活方式和社会心理因素对新生儿出生体重的影响
- 批准号:
22KF0122 - 财政年份:2023
- 资助金额:
$ 32.7万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Comprehensive Examination of Novel Risk Factors for Development of Lifestyle-related Diseases by Metallomics Analysis by Molecular Weight
通过分子量金属组学分析全面检查生活方式相关疾病发生的新危险因素
- 批准号:
23K17444 - 财政年份:2023
- 资助金额:
$ 32.7万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
"I cannot keep the weight off": Understanding the role of social identity in weight loss maintenance
“我无法保持体重”:了解社会身份在维持减肥中的作用
- 批准号:
2867783 - 财政年份:2023
- 资助金额:
$ 32.7万 - 项目类别:
Studentship