Investigations in Harmonic Analysis
谐波分析研究
基本信息
- 批准号:0456611
- 负责人:
- 金额:$ 55.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-05-15 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI and Xiaochun Li have recently established the boundedness of a degenerate Radon transform, in which a Hilbert transform is computed on choice of directions in the plane. The critical point is that the choice of directions is only assumed to be smooth, with no geometric condition imposed on the choice of directions. The method of proof involves an intricate set of phase plane methods, together with novel Kakeya maximal function. There are several aspects of this transform that remain poorly understood, and the PI will work to resolve some of these issues. In a second direction, the PI, with Sarah Ferguson and Erin Terwilleger have provided the natural extension of the Nehari theorem to 'little' Hankel operators on product Hardy space. Namely, such Hankel operators are bounded iff their symbol is in product BMO. This is fundamental criteria, which opens up a range of questions in operator theory in several complex variables. This range of questions forms the second avenue of investigation that will be pursued in this project. The range of problems to be pursued in this project will require the creation of new techniques in the broad area of analysis. The objects studies arise naturally in physical processes, such as charge distribution namely the Hilbert transform, medical imaging, namely Radon transforms, and control theory, namely Hankel operators. The questions addressed concern how well behaved these objects are, and the resolution of these questions should yield important insights into deeper aspects of these objects. These insights have in the past lead to important advances in signal processing, imaging, and control theory. Postdoctoral associates and graduate students will also be engaged in this project, enhancing the scientific infrastructure of the country. The PI and Xiaochun Li have recently established the boundedness of a degenerate Radon transform, in which a Hilbert transform is computed on choice of directions in the plane. The critical point is that the choice of directions is only assumed to be smooth, with no geometric condition imposed on the choice of directions. The method of proof involves an intricate set of phase plane methods, together with novel Kakeya maximal function. There are several aspects of this transform that remain poorly understood, and the PI will work to resolve some of these issues. In a second direction, the PI, with Sarah Ferguson and Erin Terwilleger have provided the natural extension of the Nehari theorem to 'little' Hankel operators on product Hardy space. Namely, such Hankel operators are bounded iff their symbol is in product BMO. This is fundamental criteria, which opens up a range of questions in operator theory in several complex variables. This range of questions forms the second avenue of investigation that will be pursued in this project. The range of problems to be pursued in this project will require the creation of new techniques in the broad area of analysis. The objects studies arise naturally in physical processes, such as charge distribution namely the Hilbert transform, medical imaging, namely Radon transforms, and control theory, namely Hankel operators. The questions addressed concern who well behaved these objects are, and the resolution of these questions should yield important insights into deeper aspects of these objects. These insights have in the past lead to important advances in signal processing, imaging, and control theory. Postdoctoral associates and graduate students will also be engaged in this project, enhancing the scientific infrastructure of the country.
PI和Xiaoxun Li最近建立了退化Radon变换的有界性,其中Hilbert变换是在平面上选择方向计算的。 关键点在于,方向的选择仅假设是平滑的,没有对方向的选择施加几何条件。 证明的方法涉及一组复杂的相平面方法,连同新的Kakeya极大函数。这个转换有几个方面仍然不太清楚,PI将努力解决其中的一些问题。 在第二个方向上,PI与Sarah Ferguson和Erin Terwilleger一起将Nehari定理自然地扩展到乘积哈代空间上的“小”汉克尔算子。也就是说,这样的Hankel算子是有界的当且仅当它们的符号是乘积BMO。 这是基本的标准,它开辟了一系列的问题,在算子理论在几个复杂的变量。 这一系列问题构成了本项目将进行的第二种调查途径。本项目所要解决的一系列问题将需要在广泛的分析领域创造新的技术。研究对象自然出现在物理过程中,例如电荷分布即希尔伯特变换,医学成像即Radon变换,以及控制理论即汉克尔算子。所解决的问题涉及这些对象的行为有多好,这些问题的解决应该产生对这些对象的更深层次的重要见解。这些见解在过去导致了信号处理,成像和控制理论的重要进展。博士后和研究生也将参与该项目,加强国家的科学基础设施。 PI和Xiaoxun Li最近建立了退化Radon变换的有界性,其中Hilbert变换是在平面上选择方向计算的。 关键点在于,方向的选择仅假设是平滑的,没有对方向的选择施加几何条件。 证明的方法涉及一组复杂的相平面方法,连同新的Kakeya极大函数。这个转换有几个方面仍然不太清楚,PI将努力解决其中的一些问题。 在第二个方向上,PI与Sarah Ferguson和Erin Terwilleger一起将Nehari定理自然地扩展到乘积哈代空间上的“小”汉克尔算子。也就是说,这样的Hankel算子是有界的当且仅当它们的符号是乘积BMO。 这是基本的标准,它开辟了一系列的问题,在算子理论在几个复杂的变量。 这一系列问题构成了本项目将进行的第二种调查途径。本项目所要解决的一系列问题将需要在广泛的分析领域创造新的技术。研究对象自然出现在物理过程中,例如电荷分布即希尔伯特变换,医学成像即Radon变换,以及控制理论即汉克尔算子。所解决的问题涉及到这些对象是谁表现得很好,这些问题的解决应该产生对这些对象更深层次的重要见解。这些见解在过去导致了信号处理,成像和控制理论的重要进展。博士后和研究生也将参与该项目,加强国家的科学基础设施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Lacey其他文献
Sparse domination of singular integral operators
奇异积分算子的稀疏支配
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yumeng Ou;Alexander Barron;Michael Lacey;T. Luque;Betsy Stovall;Laura Cladek;G. Karagulyan;V. Naibo;Anh Neuman;R. Torres - 通讯作者:
R. Torres
On the discrepancy function in arbitrary dimension, close to L 1
- DOI:
10.1007/s10476-008-0203-9 - 发表时间:
2008-09-20 - 期刊:
- 影响因子:0.500
- 作者:
Michael Lacey - 通讯作者:
Michael Lacey
Schatten classes and commutators of Riesz transforms in the two weight setting
双权情形下里斯变换的阴影类与交换子
- DOI:
10.1016/j.jfa.2025.111028 - 发表时间:
2025-09-15 - 期刊:
- 影响因子:1.600
- 作者:
Michael Lacey;Ji Li;Brett D. Wick;Liangchuan Wu - 通讯作者:
Liangchuan Wu
On almost sure noncentral limit theorems
- DOI:
10.1007/bf01259554 - 发表时间:
1991-10-01 - 期刊:
- 影响因子:0.600
- 作者:
Michael Lacey - 通讯作者:
Michael Lacey
B cell–derived exosomal miR-483-5p and its potential role in promoting kidney function loss in IgA nephropathy
B 细胞衍生的外泌体 miR-483-5p 及其在促进 IgA 肾病肾功能丧失中的潜在作用
- DOI:
10.1016/j.kint.2025.03.019 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:12.600
- 作者:
Izabella Z.A. Pawluczyk;Jasraj S. Bhachu;Jeremy R. Brown;Michael Lacey;Chidimma Mbadugha;Kees Straatman;David Wimbury;Haresh Selvaskandan;Jonathan Barratt - 通讯作者:
Jonathan Barratt
Michael Lacey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Lacey', 18)}}的其他基金
Sparse Bounds and Improving Estimates, Continuous and Discrete
稀疏界限和改进估计,连续和离散
- 批准号:
1949206 - 财政年份:2020
- 资助金额:
$ 55.14万 - 项目类别:
Standard Grant
REU Site: Georgia Institute of Technology Mathematics Research Experiences for Undergraduates
REU 网站:佐治亚理工学院本科生数学研究经验
- 批准号:
1851843 - 财政年份:2019
- 资助金额:
$ 55.14万 - 项目类别:
Standard Grant
Discrete Problems in Harmonic Analysis and One Bit Sensing
谐波分析和一位传感中的离散问题
- 批准号:
1600693 - 财政年份:2016
- 资助金额:
$ 55.14万 - 项目类别:
Continuing Grant
Two Weight Inequalities for Singular Integrals
奇异积分的两个权重不等式
- 批准号:
1265570 - 财政年份:2013
- 资助金额:
$ 55.14万 - 项目类别:
Continuing Grant
Problems in Weighted Inequalities, Phase Plane Analysis
加权不等式、相平面分析中的问题
- 批准号:
0968499 - 财政年份:2010
- 资助金额:
$ 55.14万 - 项目类别:
Continuing Grant
Special Meeting: CRM Special Semester on Harmonic analysis, Geometric Measure Theory and Quasiconformal Mappings
特别会议:CRM调和分析、几何测度理论和拟共形映射特别学期
- 批准号:
0902259 - 财政年份:2009
- 资助金额:
$ 55.14万 - 项目类别:
Standard Grant
EMSW21-MCTP: A Georgia Tech Plan for Recruiting and Mentoring Undergraduates in Mathematics
EMSW21-MCTP:佐治亚理工学院数学本科生招募和指导计划
- 批准号:
0739343 - 财政年份:2008
- 资助金额:
$ 55.14万 - 项目类别:
Continuing Grant
Special Meeting: Fields Program on New Trends in Harmonic Analysis - International U.S. Participation
特别会议:谐波分析新趋势领域计划 - 美国国际参与
- 批准号:
0648811 - 财政年份:2007
- 资助金额:
$ 55.14万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Trends in Harmonic Analysis
FRG:协作研究:谐波分析的新趋势
- 批准号:
0456538 - 财政年份:2005
- 资助金额:
$ 55.14万 - 项目类别:
Standard Grant
相似国自然基金
算子方法在Harmonic数恒等式中的应用
- 批准号:11201241
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Ricci-Harmonic流的长时间存在性
- 批准号:11126190
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 55.14万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 55.14万 - 项目类别:
Standard Grant
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
- 批准号:
2349756 - 财政年份:2024
- 资助金额:
$ 55.14万 - 项目类别:
Standard Grant
Conference: Madison Lectures in Harmonic Analysis
会议:麦迪逊谐波分析讲座
- 批准号:
2337344 - 财政年份:2024
- 资助金额:
$ 55.14万 - 项目类别:
Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 55.14万 - 项目类别:
Standard Grant
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
- 批准号:
2348797 - 财政年份:2024
- 资助金额:
$ 55.14万 - 项目类别:
Standard Grant
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
- 批准号:
2236493 - 财政年份:2023
- 资助金额:
$ 55.14万 - 项目类别:
Continuing Grant
Conference: Harmonic and Complex Analysis: Modern and Classical
会议:调和与复分析:现代与古典
- 批准号:
2308417 - 财政年份:2023
- 资助金额:
$ 55.14万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 55.14万 - 项目类别:
Standard Grant