Singularities in Algebraic Geometry
代数几何中的奇点
基本信息
- 批准号:0500127
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal deals with invariants of singularities with the origin in birational geometry, D-module theory and tight closure theory.Invariants like the log canonical threshold or minimal log discrepancies play an important role in Mori Theory: as shown by Shokurov, their conjectural properties would have strong implications to one of the main open problems (the so-called Termination of Flips). On the other hand, it has been realized that these invariants are closely related with invariants from other fields, for example with the Bernstein polynomial (from D-module theory), with invariants defined in positive characteristic, such as the F-pure threshold, or with spaces of arcs and jets. The main goal of this proposal is to further study the connections between these different approaches, and to apply this towards a better understanding of these invariants.One of the long-term goals in algebraic geometry is to give some sort of classification of nonsingular varieties. A basic insight in the last twenty-five years is that singular spaces appear naturally into the picture, and that a good understanding of their singularities is crucial for the classification process. General properties of the invariants that measure how bad the singularities are play an important role in this study. The plan is to use approaches from various perspectives to shed some light on these general properties.
本文讨论了两族几何、d模理论和紧闭理论中带原点奇点的不变量。像对数规范阈值或最小对数差异这样的不变量在Mori理论中扮演着重要的角色:正如Shokurov所示,它们的推测性质将对一个主要的开放问题(所谓的“翻转终止”)产生强烈的影响。另一方面,人们已经认识到这些不变量与其他领域的不变量密切相关,例如伯恩斯坦多项式(来自d模理论),定义为正特征的不变量,如f纯阈值,或弧和射流空间。本提案的主要目标是进一步研究这些不同方法之间的联系,并将其应用于更好地理解这些不变量。代数几何的长期目标之一是给出非奇异变量的某种分类。在过去的25年里,一个基本的见解是奇异空间自然地出现在图像中,而对它们的奇异性的良好理解对于分类过程至关重要。衡量奇异性好坏的不变量的一般性质在本研究中起着重要作用。我们的计划是从不同的角度使用方法来阐明这些一般属性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mircea Mustata其他文献
An irrational variant of the congruent number problem
全等数问题的无理变体
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura;Jerome Dimabayao - 通讯作者:
Jerome Dimabayao
The moduli spaces of stable parabolic λ-connections and their canonical coordinates (Joint works with M. Inaba and with S. Szabo)
稳定抛物线 λ 连接的模空间及其规范坐标(与 M. Inaba 和 S. Szabo 联合工作)
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Ken-ichi Yoshida;Masa-Hiko Saito - 通讯作者:
Masa-Hiko Saito
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
- DOI:
10.1090/conm/712/14351 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura - 通讯作者:
Yusuke Nakamura
The ring of modular forms of O(2,4;Z) with characters
带字符的 O(2,4;Z) 模形式环
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura;Jerome Dimabayao;Atsuhira Nagano and Kazushi Ueda - 通讯作者:
Atsuhira Nagano and Kazushi Ueda
Mircea Mustata的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mircea Mustata', 18)}}的其他基金
Hodge Filtration on Local Cohomology and Minimal Exponents
局部上同调和最小指数的 Hodge 过滤
- 批准号:
2001132 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Hodge-Theoretic Generalizations of Multiplier Ideals
乘数理想的霍奇理论推广
- 批准号:
1701622 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Questions on Singularities and Adjoint Linear Systems
关于奇点和伴随线性系统的问题
- 批准号:
1401227 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
- 批准号:
1265256 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Invariants of Singularities in Zero and Positive Characteristic
零特征和正特征中奇点的不变量
- 批准号:
1068190 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
2139613 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
A Unified Perspective on Singularities in Commutative Algebra and Algebraic Geometry
交换代数和代数几何奇异性的统一视角
- 批准号:
2101800 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952399 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952522 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952531 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1951376 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952366 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Comprehensive study of algebraic varieties and singularities and their applications to engineering centered on tropical geometry
以热带几何为中心的代数簇和奇点综合研究及其工程应用
- 批准号:
17K05206 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic geometry - singularities, jet schemes, and multiplier ideals
代数几何 - 奇点、喷射方案和乘数理想
- 批准号:
347440-2007 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Singularities in commutative algebra and algebraic geometry
交换代数和代数几何中的奇点
- 批准号:
105583-1997 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual