Arithmetic and Analysis on Locally Symmetric Spaces and Applications
局部对称空间的计算与分析及应用
基本信息
- 批准号:0500191
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2010-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(mathematical) This proposal is concerned with the analytic theoryof automorphic forms. Specifically the study of the sizeof a general automorphic L-function on the critical lineand the size of an eigenfunction on an arithmetic locally symmetricspace .In both cases the main goal is to establish a subconvexestimate . In the first case the sharpest form of such an estimatewould follow from the Grand Riemann Hypothesis .However many of thedesired applications of such estimates only require subconvexity.The applications are varied ,one such being the recent subconvexestimate by Cogdell,Piatetsky-Shapiro and the proposer which allowsfor the resolution of Hilbert's 11th problem on the representationof integers by quadratic forms in a number field.Other applicationsare to problems in mathematical physics ,specifically the behaviorof quantum states in quantizations of classically chaotic systems. Thesecond problem of the size of an eigenfunction on such locallysymmetric spaces is closely associated with the first and the proposal is concerned with understanding this more difficult problem.It constitutes a generalization of the Ramanujan conjectures. (general): The proposal is concerned with the study of special types of geometric spaces which are defined via arithmetic and number theoretic constructions. This has been an active area of investigation for the last 60 or so years ,primarily since it carries some of the most powerful tools that we know in number theory (to diophantine problemsas well as ones associated with prime numbers). Specifically theseemingly technical issues that are being investigated have applicationsto resolve some simple well known problems in number theory. One such isone of Hilbert's problems from 1900 concerning which numbers are sums of3 integer squares in an extention of the ordinary whole numbers tointegers in a number field. Other applications of this theory are perhapsless traditional and are to Mathematical Physics,specifically QuantumChaos. These spaces provide one of the few (in fact the only one) classically chaotic Hamiltonian systems whose quantization can be satisfactorally studied mathematically. The techniques to do so are number theoretic and the results are often quite surprizing.
(数学)这个提议涉及自守形式的分析理论。具体来说,研究临界线上一般自同构 L 函数的大小和算术局部对称空间上本征函数的大小。在这两种情况下,主要目标都是建立次凸估计。在第一种情况下,这种估计的最尖锐形式将来自大黎曼假设。然而,这种估计的许多所需应用只需要次凸性。应用是多种多样的,其中一个是 Cogdell、Piatetsky-Shapiro 和提议者最近提出的次凸估计,它允许解决希尔伯特关于用数中的二次形式表示整数的第 11 个问题。 其他应用涉及数学物理问题,特别是经典混沌系统量子化中量子态的行为。这种局部对称空间上的特征函数的大小的第二个问题与第一个问题密切相关,该提案涉及理解这个更困难的问题。它构成了拉马努金猜想的推广。 (一般):该提案涉及通过算术和数论构造定义的特殊类型几何空间的研究。在过去 60 年左右的时间里,这一直是一个活跃的研究领域,主要是因为它拥有我们所知道的数论中一些最强大的工具(针对丢番图问题以及与素数相关的问题)。 具体来说,正在研究的看似技术问题可用于解决数论中一些简单的众所周知的问题。其中一个问题是 1900 年提出的希尔伯特问题,该问题涉及数字是普通整数到数域中整数的扩展中的 3 个整数平方和。该理论的其他应用也许不那么传统,并且是数学物理,特别是量子混沌。这些空间提供了少数(实际上是唯一的)经典混沌哈密顿系统之一,其量化可以得到令人满意的数学研究。这样做的技术是数论的,结果往往令人惊讶。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Sarnak其他文献
A universal lower bound for certain quadratic integrals of automorphic <em>L</em>–functions
- DOI:
10.1016/j.jnt.2024.02.018 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Laurent Clozel;Peter Sarnak - 通讯作者:
Peter Sarnak
Arithmetic and Equidistribution of Measures on the Sphere
- DOI:
10.1007/s00220-003-0922-5 - 发表时间:
2003-09-22 - 期刊:
- 影响因子:2.600
- 作者:
Siegfried Böcherer;Peter Sarnak;Rainer Schulze-Pillot - 通讯作者:
Rainer Schulze-Pillot
The Grand Riemann Hypothesis
- DOI:
10.1007/s00032-010-0126-3 - 发表时间:
2010-07-24 - 期刊:
- 影响因子:0.800
- 作者:
Peter Sarnak - 通讯作者:
Peter Sarnak
Compact isospectral sets of plane domains.
平面域的紧凑等谱集。
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:11.1
- 作者:
Brad Osgood;Ralph S. Phillips;Peter Sarnak - 通讯作者:
Peter Sarnak
The laplacian for domains in hyperbolic space and limit sets of Kleinian groups
双曲空间域的拉普拉斯和克莱因群的极限集
- DOI:
- 发表时间:
1985 - 期刊:
- 影响因子:0
- 作者:
R. Phillips;Peter Sarnak - 通讯作者:
Peter Sarnak
Peter Sarnak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Sarnak', 18)}}的其他基金
Conference: Monodromy and Its Applications
会议:单色性及其应用
- 批准号:
2330598 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Diophantine Analysis: From Structured to Random
丢番图分析:从结构化到随机
- 批准号:
1802211 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: Analysis and Beyond; Princeton; New Jersey; May 21-24, 2016
会议:分析及超越;
- 批准号:
1607487 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Randomness in number theory and automorphic forms
数论中的随机性和自守形式
- 批准号:
1302952 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Graduate opportunities in Number Theory and Random Matrix Theory
数论和随机矩阵理论的研究生机会
- 批准号:
0352870 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Locally adaptive scale optimization for hyper-scale terrain analysis
用于超尺度地形分析的局部自适应尺度优化
- 批准号:
548084-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
A Gender Analysis of International Migrant During the Pandemic : A Case Study of The Locally Employed Japanese Women Working in the Hotel Industry
大流行期间国际移民的性别分析:以在酒店业工作的当地日本女性为例
- 批准号:
21K20193 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Chemical composition analysis of locally made/used ceramics by neutron activation analysis to establish a high-resolution approach to the study of history of local economic development
通过中子活化分析对当地制造/使用的陶瓷进行化学成分分析,为研究当地经济发展历史建立高分辨率方法
- 批准号:
21K18379 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Locally adaptive scale optimization for hyper-scale terrain analysis
用于超尺度地形分析的局部自适应尺度优化
- 批准号:
548084-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Locally adaptive scale optimization for hyper-scale terrain analysis
用于超尺度地形分析的局部自适应尺度优化
- 批准号:
548084-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Treatment monitoring in early and locally advanced breast cancer using circulating tumor DNA analysis
使用循环肿瘤 DNA 分析监测早期和局部晚期乳腺癌的治疗
- 批准号:
10304444 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Pre-analytical factors affecting ctDNA analysis in early and locally advanced breast cancer
影响早期和局部晚期乳腺癌 ctDNA 分析的分析前因素
- 批准号:
9893681 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Pre-analytical factors affecting ctDNA analysis in early and locally advanced breast cancer
影响早期和局部晚期乳腺癌 ctDNA 分析的分析前因素
- 批准号:
10304711 - 财政年份:2019
- 资助金额:
-- - 项目类别:
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
- 批准号:
RGPIN-2015-04007 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Pre-analytical factors affecting ctDNA analysis in early and locally advanced breast cancer
影响早期和局部晚期乳腺癌 ctDNA 分析的分析前因素
- 批准号:
10246983 - 财政年份:2019
- 资助金额:
-- - 项目类别:














{{item.name}}会员




