Conference: Monodromy and Its Applications
会议:单色性及其应用
基本信息
- 批准号:2330598
- 负责人:
- 金额:$ 4.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This conference will discuss the general topic of monodromy. Monodromy occurs when a mathematical object varies smoothly over a space, appearing identical at a point and each nearby point, but traveling around a loop in the space causes the object to twist around. Monodromy occurs throughout mathematics and specifically can be seen in the M¨obius strip: each small piece is an ordinary piece of paper, but traveling around the circle causes the paper to flip around to the opposite side. This conference will provide a historical perspective, recount current results, and look forwad to future developments in monodromy.The main theme of the conference will be the key role of monodromy in all its incarnations: classical and l-adic, local and global, arithmetic and geometric, applications of it in number theory and algebraic geometry, and its connections to group theory and representation theory. In recent years there have been a number of exciting developments in this area. These include the complete classification of the finite (almost quasi) simple groups that occur as monodromy groups of hypergeometric sheaves by Katz, Rojas-Le´on and Tiep, the proof of many cases of the Putman-Wieland conjecture by Landesmann and Litt, the calculation of Tannakian monodromy groups in new settings by many mathematicians and their applications to generalizations of Shafarevich’s conjecture by Lawrence and Sawin, the proof of a relative analogue of Grothendieck’s period conjecture for a family of varieties by Bakker and Tsimerman, and the proof of the unbounded denominators conjecture by Calegari, Dimitrov, and Tang. The conference will discuss developments related to these and other manifestations of monondromy in mathematics. Conference website https://www.math.princeton.edu/katz80This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这次会议将讨论单行文字的一般话题。当一个数学对象在一个空间中平滑地变化,在一个点和附近的每个点看起来都是相同的,但在空间中绕着一个环移动会导致对象扭曲时,单行就发生了。单行现象在整个数学中都存在,在莫比乌斯条中尤其明显:每一小块都是一张普通的纸,但绕着圆圈运动会使纸翻到相反的一面。这次会议将提供历史的视角,回顾当前的成果,并展望未来的发展。会议的主题将是单行在所有化身中的关键作用:经典和L-进,局部和全局,算术和几何,它在数论和代数几何中的应用,以及它与群论和表示论的联系。近年来,这一领域出现了一些令人振奋的发展。其中包括Katz,Rojas-Le‘on和Tiep对有限(几乎拟)单群的完全分类,Landesmann和Litt对Putman-Wieland猜想的许多情况的证明,许多数学家在新环境下对Tannakian单群的计算及其应用,Lawrence和Sawin对Shafarevich猜想的推广,Bakker和Tsimerman对Grothendieck关于一族变种的周期猜想的相对类似的证明,以及Calegari,Dimitrov和Tang对无界分母猜想的证明。会议将讨论与这些和数学中的单元性的其他表现形式相关的发展。会议网站https://www.math.princeton.edu/katz80This奖反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Sarnak其他文献
A universal lower bound for certain quadratic integrals of automorphic <em>L</em>–functions
- DOI:
10.1016/j.jnt.2024.02.018 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Laurent Clozel;Peter Sarnak - 通讯作者:
Peter Sarnak
Arithmetic and Equidistribution of Measures on the Sphere
- DOI:
10.1007/s00220-003-0922-5 - 发表时间:
2003-09-22 - 期刊:
- 影响因子:2.600
- 作者:
Siegfried Böcherer;Peter Sarnak;Rainer Schulze-Pillot - 通讯作者:
Rainer Schulze-Pillot
The Grand Riemann Hypothesis
- DOI:
10.1007/s00032-010-0126-3 - 发表时间:
2010-07-24 - 期刊:
- 影响因子:0.800
- 作者:
Peter Sarnak - 通讯作者:
Peter Sarnak
Compact isospectral sets of plane domains.
平面域的紧凑等谱集。
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:11.1
- 作者:
Brad Osgood;Ralph S. Phillips;Peter Sarnak - 通讯作者:
Peter Sarnak
The laplacian for domains in hyperbolic space and limit sets of Kleinian groups
双曲空间域的拉普拉斯和克莱因群的极限集
- DOI:
- 发表时间:
1985 - 期刊:
- 影响因子:0
- 作者:
R. Phillips;Peter Sarnak - 通讯作者:
Peter Sarnak
Peter Sarnak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Sarnak', 18)}}的其他基金
Diophantine Analysis: From Structured to Random
丢番图分析:从结构化到随机
- 批准号:
1802211 - 财政年份:2018
- 资助金额:
$ 4.47万 - 项目类别:
Continuing Grant
Conference: Analysis and Beyond; Princeton; New Jersey; May 21-24, 2016
会议:分析及超越;
- 批准号:
1607487 - 财政年份:2016
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
Randomness in number theory and automorphic forms
数论中的随机性和自守形式
- 批准号:
1302952 - 财政年份:2013
- 资助金额:
$ 4.47万 - 项目类别:
Continuing Grant
Arithmetic and Analysis on Locally Symmetric Spaces and Applications
局部对称空间的计算与分析及应用
- 批准号:
0500191 - 财政年份:2005
- 资助金额:
$ 4.47万 - 项目类别:
Continuing Grant
Graduate opportunities in Number Theory and Random Matrix Theory
数论和随机矩阵理论的研究生机会
- 批准号:
0352870 - 财政年份:2004
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
Families of L-functions and Applications
L 函数族及其应用
- 批准号:
0202982 - 财政年份:2002
- 资助金额:
$ 4.47万 - 项目类别:
Continuing Grant
Initiative for an Enhanced Mathematics Education in Princeton
普林斯顿加强数学教育倡议
- 批准号:
9810783 - 财政年份:1999
- 资助金额:
$ 4.47万 - 项目类别:
Continuing Grant
相似海外基金
A study of solutions of the Painleve equation derived from monodromy invariant Hermitian forms.
研究从单向不变埃尔米特形式导出的 Painleve 方程的解。
- 批准号:
22KJ2518 - 财政年份:2023
- 资助金额:
$ 4.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Visualizing twists in data through monodromy
通过单一性可视化数据的扭曲
- 批准号:
22K18267 - 财政年份:2022
- 资助金额:
$ 4.47万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Monodromy in Topology and Geometric Group Theory
拓扑学和几何群论中的单向性
- 批准号:
2153879 - 财政年份:2021
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
Monodromy in Topology and Geometric Group Theory
拓扑学和几何群论中的单向性
- 批准号:
2003984 - 财政年份:2020
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
Development in geometric Galois theory and monodromy
几何伽罗瓦理论和一元论的发展
- 批准号:
18K03230 - 财政年份:2018
- 资助金额:
$ 4.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Axion monodromy: Cosmological tests of string theory
轴子一律:弦理论的宇宙学检验
- 批准号:
504445-2017 - 财政年份:2018
- 资助金额:
$ 4.47万 - 项目类别:
Postgraduate Scholarships - Doctoral
Galois Representations, Monodromy Groups, and Motives
伽罗瓦表示、单调群和动机
- 批准号:
1700759 - 财政年份:2017
- 资助金额:
$ 4.47万 - 项目类别:
Continuing Grant
Axion monodromy: Cosmological tests of string theory
轴子一律:弦理论的宇宙学检验
- 批准号:
504445-2017 - 财政年份:2017
- 资助金额:
$ 4.47万 - 项目类别:
Postgraduate Scholarships - Doctoral
Monodromy Theorems, Affine Quantum Groups, and Meromorphic Tensor Categories
单向定理、仿射量子群和亚纯张量范畴
- 批准号:
1505305 - 财政年份:2015
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
Polytopes: their monodromy groups and visualization
多形体:它们的单性群和可视化
- 批准号:
483898-2015 - 财政年份:2015
- 资助金额:
$ 4.47万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




