Curvature rigidity, quasi-local mass and related problems

曲率刚度、准局部质量及相关问题

基本信息

  • 批准号:
    0505645
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0505645Principal Investigator: Xiaodong WangOne of the central themes in differential geometry is tounderstand curvature and its implications in terms of geometricand topological properties. Despite the enormous progress madeduring the last several decades, there remain many fundamentalproblems. This project is to study several such problemsinvolving the scalar curvature. The first one is to understandthe boundary effect on manifolds with convex boundary andpositive scalar curvature. This is closely related tounderstanding quasi-local mass in general relativity. A keyspecific case is whether a compact three-manifold with scalarcurvature bigger or equal to six whose boundary is totallygeodesic and isometric to the standard two-sphere is isometric tothe three dimensional hemisphere. The second problem is whetheron a compact hyperbolic three-manifold the Yamabe number isachieved by the hyperbolic metric. If true it will be aremarkable generalization of several deep results in Riemanniangeometry. It is equivalent to the question whether the hyperbolicmetric has smaller volume than any other metric with the samescalar curvature. These problems definitely will serve as greatsource of inspiration and lead to many other fascinatingproblems.This project will have a broad impact outside the field ofgeometric analysis. These important problems are closely relatedto theoretical physics, particularly general relativity. Theirsolutions will greatly enhance our understanding of spacetimestructures. It is also conceivable that understanding boundaryeffect under various curvature assumptions will have applicationsin other areas of science and engineering. The author hopes thatthe project will also have a positive contribution toundergraduate and graduate education and training. It will bepart of the author's joint efforts with his colleagues tostrengthen the graduqate program in geometric analysis atMichigan State University.
AbstractAward:DMS-0505645首席研究员:王晓东微分几何的中心主题之一是理解曲率及其在几何和拓扑性质方面的含义。尽管在过去的几十年里取得了巨大的进步,但仍然存在许多根本性的问题。 本课题就是研究这类涉及标量曲率的问题。第一部分是了解具有凸边界和正数量曲率的流形上的边界效应。这与广义相对论中对准定域质量的理解密切相关。一个关键的特例是一个标量曲率大于或等于6的紧致三维流形,其边界是全测地的且与标准二球面等距,是否与三维半球等距.第二个问题是紧双曲三流形上的Yamabe数是否由双曲度量得到。如果是真的,这将是黎曼几何中几个深层次结果的显著推广.这等价于双曲度量是否比任何曲率相同的度量具有更小的体积的问题。这些问题无疑将成为一个巨大的灵感来源,并导致许多其他迷人的问题,这个项目将产生广泛的影响以外的领域的几何分析.这些重要的问题与理论物理,特别是广义相对论密切相关。它们的解将极大地增强我们对时空结构的理解。 也可以想象,在各种曲率假设下理解边界效应将在科学和工程的其他领域中有应用。笔者希望本项目也能对本科生和研究生的教育与培训做出积极的贡献。 这将是作者与同事们共同努力加强密歇根州立大学几何分析研究生课程的一部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaodong Wang其他文献

Understanding the Scheduling Performance in Wireless Networks with Successive Interference Cancellation
了解具有连续干扰消除的无线网络的调度性能
  • DOI:
    10.1109/tmc.2012.140
  • 发表时间:
    2013-08
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Ming Xu;Xiaodong Wang;Chi Liu;Xingming Zhou
  • 通讯作者:
    Xingming Zhou
Design and fabrication of dual-functional microcapsules containing phase change material core and zirconium oxide shell with fluorescent characteristics
具有荧光特性的相变材料核和氧化锆壳双功能微胶囊的设计与制备
Bio-inspired design of an auxiliary fishbone-shaped cathode flow field pattern for polymer electrolyte membrane fuel cells
聚合物电解质膜燃料电池辅助鱼骨形阴极流场模式的仿生设计
  • DOI:
    10.1016/j.enconman.2020.113588
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Yulin Wang;Chao Si;Yanzhou Qin;Xiaodong Wang;Yuanzhi Fan;Yuyao Gao
  • 通讯作者:
    Yuyao Gao
Experimental and Numerical Analysis of the Effect of Vortex Generator Installation Angle on Flow Separation Control
涡流发生器安装角度对流动分离控制影响的实验与数值分析
  • DOI:
    10.3390/en12234583
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Xinkai Li;Wei Liu;Tingjun Zhang;Peiming Wang;Xiaodong Wang
  • 通讯作者:
    Xiaodong Wang
Dynamic response analysis for the aero-engine dual-rotor-bearing system with flexible coupling misalignment faults
航空发动机双转子轴承系统弹性联轴器不对中故障动态响应分析
  • DOI:
    10.21595/jve.2017.18553
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Zhenyong Lu;Xiaodong Wang;Lei Hou;Yushu Chen;Hongliang Li
  • 通讯作者:
    Hongliang Li

Xiaodong Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaodong Wang', 18)}}的其他基金

A RadBackCom Approach to Integrated Sensing and Communication: Waveform Design and Receiver Signal Processing
RadBackCom 集成传感和通信方法:波形设计和接收器信号处理
  • 批准号:
    2335765
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New Route to Zero Carbon Hydrogen
零碳氢新途径
  • 批准号:
    EP/X018172/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Pushing Heterogeneous Catalysis into Biological Chemistry via Cofactor Regeneration
通过辅因子再生将多相催化推向生物化学
  • 批准号:
    EP/V048635/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Real-Time Data-Driven Anomaly Detection for Complex Networks
协作研究:复杂网络的实时数据驱动异常检测
  • 批准号:
    2040500
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: TensorNN: An Algorithm and Hardware Co-design Framework for On-device Deep Neural Network Learning using Low-rank Tensors
合作研究:SHF:Medium:TensorNN:使用低秩张量进行设备上深度神经网络学习的算法和硬件协同设计框架
  • 批准号:
    1954549
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CIF: Small: Massive MIMO for Massive Machine-Type Communication
CIF:小型:用于大规模机器类型通信的大规模 MIMO
  • 批准号:
    1814803
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Communications with Energy Harvesting Nodes
CIF:小型:协作研究:与能量收集节点的通信
  • 批准号:
    1526215
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Advanced Signal Processing for Smard Grid and Renewable Energy Sources
适用于智能电网和可再生能源的高级信号处理
  • 批准号:
    1405327
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CIF: Medium Projects: Event-Triggered Sampling: Application to Decentralized Detection and Estimation
CIF:中型项目:事件触发采样:在去中心化检测和估计中的应用
  • 批准号:
    1064575
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CDI Type II/Collaborative Research: A New Approach to the Modeling of Clot Formation and Lysis in Arteries
CDI II 型/合作研究:动脉血栓形成和溶解建模的新方法
  • 批准号:
    1028112
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
  • 批准号:
    2349566
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
  • 批准号:
    2339110
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Transcutaneous Phrenic Nerve Stimulation for Treating Opioid Overdose
经皮膈神经刺激治疗阿片类药物过量
  • 批准号:
    10681111
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
THE ROLE OF MEDIUM SPINY NEURONS IN SLEEP DEPRIVATION-INDUCED COGNITIVE RIGIDITY.
中型棘神经元在睡眠剥夺引起的认知僵化中的作用。
  • 批准号:
    10656057
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
  • 批准号:
    DE230100415
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Characterizing and modulating motor cortical dynamics underlying rapid sequence learning in primates
表征和调节灵长类动物快速序列学习背后的运动皮层动力学
  • 批准号:
    10677450
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Pioneering arithmetic topology around cyclotomic units and application to profinite rigidity
围绕分圆单元的开创性算术拓扑及其在有限刚度上的应用
  • 批准号:
    23K12969
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Constraints, Rigidity, and Risk in Global Supply Chains
全球供应链的约束、刚性和风险
  • 批准号:
    2315629
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了