Mathematical Analysis for Problems in Nonlinear Optics
非线性光学问题的数学分析
基本信息
- 批准号:0505681
- 负责人:
- 金额:$ 7.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-15 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract, DMS-0505681, J Moeser, University of Colorado Title: Mathematical Analysis for Problems in Nonlinear Optics The purpose of this project is to develop and implement analytical techniques for the study of problems arising in nonlinear optics. The array of applications ranges from light pulse propagation in optical fibers and nonlinear waveguides to stabilization of spatio-temporal solitons, both for deterministic systems and systems with a stochastic component. Depending on the particular application, the relevant mathematical models are nonlinear partial differential equations, integral equations, or discrete equations. The core mathematical issues are fundamental understanding of asymptotic theories, both analytically and numerically, well posedness or blow up for the modeling equations, and the search for solitary wave solutions via direct methods of calculus of variations. This project focuses on three major applications in nonlinear optics: systems with randomness, discrete systems, and generalized dispersion managed systems. Randomness arises ubiquitously in nonlinear optics and an important goal of this project is to study noise models that are physically relevant and analyzable in a rigorous probabilistic sense. Such models have already yielded new types of fundamental solitons and their study may help engineers to design optical devices whose performance is actually enhanced by small amounts of randomness. Discrete equations arise in many important contexts, including the study of nonlinear waveguides, all-optical switches, and Bose-Einstein condensates. Discrete models have very different properties than those of their continuous counterparts, and though regularity of solutions in the spatial variable is no longer an issue, the lack of scaling invariances in general makes their analysis more difficult. Thus discrete problems invite the development of new analytical tools which ultimately will help explain experimental observations. Finally, the P.I. will study generalized dispersion managed systems. The technique of dispersion management has been instrumental in enabling higher bit rate communications and has provided the impetus for many interesting mathematical investigations. The approximate models that arise have a nonlocal nonlinearity which presents interesting mathematical and numerical challenges. Often the nonlocality in the modeling equation reflects a stabilizing effect in the original physical system, and an important recurring question is how to exploit the nonlocal structure in order to help explain the observed stabilization. The P.I. will examine the application of dispersion management technology in contexts other than fiber optic communications, such as the search for spatio-temporal solitons, where the P.I. expects to obtain new information on it's possible stabilizing effects. Fundamental mathematical understanding of nonlinear optical systems is central to the development of technologies that will be able to support the ever increasing demands of future Internet expansion. Fast, stable data transmission is critically important to a wide array of sectors of national interest, ranging from banking, the stock exchange, and insurance to health services, transportation, and homeland security. The information gleaned through the proposed research will aid in the design and implementation of novel optical systems that will help meet the growing need for bandwidth.
摘要,DMS-0505681,J Moeser,科罗拉多大学标题:非线性光学问题的数学分析这个项目的目的是开发和实施分析技术,用于研究非线性光学中出现的问题。其应用范围从光脉冲在光纤和非线性波导中的传输到时空孤子的稳定化,既适用于确定性系统,也适用于具有随机分量的系统。根据特定的应用,相关的数学模型可以是非线性偏微分方程组、积分方程组或离散方程。核心的数学问题是对渐近理论的基本理解,无论是解析的还是数值的,模型方程的适定性或爆破,以及通过直接变分方法寻找孤立波解。本项目主要关注非线性光学中的三个主要应用:具有随机性的系统、离散系统和广义色散管理系统。随机性在非线性光学中普遍存在,本项目的一个重要目标是研究物理上相关的、可在严格概率意义上分析的噪声模型。这样的模型已经产生了新类型的基孤子,他们的研究可能有助于工程师设计光学设备,其性能实际上因少量的随机性而得到增强。离散方程产生于许多重要的背景下,包括对非线性波导、全光开关和玻色-爱因斯坦凝聚的研究。离散模型与连续模型具有非常不同的性质,虽然空间变量解的正则性不再是问题,但通常缺乏尺度不变性使它们的分析变得更加困难。因此,离散问题需要开发新的分析工具,这最终将有助于解释实验观察。最后,P.I.将研究广义色散管理系统。色散管理技术有助于实现更高的比特率通信,并为许多有趣的数学研究提供了动力。由此产生的近似模型具有非局部非线性,这提出了有趣的数学和数值挑战。通常,模型方程中的非局域性反映了原始物理系统中的稳定化效应,一个重要的反复出现的问题是如何利用非局域结构来帮助解释观察到的稳定化。P.I.将研究色散管理技术在光纤通信以外的环境中的应用,例如搜索时空孤子,P.I.希望获得有关其可能的稳定效果的新信息。对非线性光学系统的基本数学理解是技术发展的核心,这些技术将能够支持未来互联网扩张日益增长的需求。快速、稳定的数据传输对广泛的国家利益部门至关重要,从银行、证券交易所和保险到医疗服务、交通和国土安全。通过拟议的研究收集到的信息将有助于设计和实施有助于满足日益增长的带宽需求的新型光学系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jamison Moeser其他文献
Jamison Moeser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
$ 7.76万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
- 批准号:
2153992 - 财政年份:2022
- 资助金额:
$ 7.76万 - 项目类别:
Standard Grant
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
- 批准号:
569312-2022 - 财政年份:2022
- 资助金额:
$ 7.76万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Mathematical analysis on various problems for total variation flow equations
全变分流方程各问题的数学分析
- 批准号:
21F20811 - 财政年份:2021
- 资助金额:
$ 7.76万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical analysis of inverse problems and modelling for complex fluids and diffusion in heterogeneous media
逆问题的数学分析以及复杂流体和非均匀介质中扩散的建模
- 批准号:
20H00117 - 财政年份:2020
- 资助金额:
$ 7.76万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mathematical analysis of pattern dynamics of reaction-diffusion systems and their singular limit problems
反应扩散系统模式动力学及其奇异极限问题的数学分析
- 批准号:
20H01816 - 财政年份:2020
- 资助金额:
$ 7.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical analysis for fractional diffusion-wave equations and related inverse problems
分数扩散波方程及相关反问题的数学分析
- 批准号:
20K14355 - 财政年份:2020
- 资助金额:
$ 7.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Optimal control problems in mathematical biology: Modelling, analysis and numerics
数学生物学中的最优控制问题:建模、分析和数值
- 批准号:
2435611 - 财政年份:2020
- 资助金额:
$ 7.76万 - 项目类别:
Studentship
Problems in Complex Analysis, Partial Differential Equations, and Mathematical Physics
复分析、偏微分方程和数学物理问题
- 批准号:
1855947 - 财政年份:2019
- 资助金额:
$ 7.76万 - 项目类别:
Standard Grant
Mathematical analysis of anisotropy and singular limit problems in the equations of geophysical fluid dynamics
地球物理流体动力学方程各向异性和奇异极限问题的数学分析
- 批准号:
19K03584 - 财政年份:2019
- 资助金额:
$ 7.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)