CMG: Analytical and Computational Studies of Magma Dynamics

CMG:岩浆动力学的分析和计算研究

基本信息

  • 批准号:
    0530853
  • 负责人:
  • 金额:
    $ 31.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

The investigators are focused on developing a deeper understanding of the behavior of the dynamics of partially molten rock (magma) in the Earth's mantle. This problem has important implications for the dynamics of large scale mantle convection and plate tectonics as well as the geochemical evolution of the planet. Magma migration is also an intrinsically interesting problem in coupled fluid/solid mechanics as it requires understanding the non-linear interactions of low viscosity reactive fluids in a strongly deformable and permeable matrix. For the past 20 years, the predominant theory for magma migration in the mantle has been a system of mathematical models (partial differential equations or PDEs), which describe the evolution of macroscopic quantities, e.g. the porosity or proportion of molten rock at a given position and time. These equations have proved useful for exploring the behavior of magmatic systems through both simplified model problems and more complex geoscience specific applications. However, more recent experimental work suggests that there exist some important quantitative discrepancies between the experiments and predictions of these models. In particular, these models become singular as the porosity becomes small. These and other results suggest that a modeling and mathematical understanding of the behavior of the current equations is necessary to gauge the utility of these models and to develop improved mathematical descriptions (e.g. by introducing physically reasonable regularizations) for partially molten regions in large scale mantle dynamics. The purpose of this proposal is to combine expertise in the analysis of non-linear PDE's with the physics and computation of magma dynamics to develop better insight and better models for complex coupled fluid/solid systems. This work is collaborative effort between Michael I. Weinstein (Columbia Applied Mathematics) and Marc Spiegelman (Columbia Joint appointment between Earth and Env. Sciences and Applied Math) and will be the primary Ph. D. research of Gideon Simpson who is jointly supervised by Weinstein and Spiegelman. This project will attack two separate problems that arise at different scales in partially molten regions. At large scales, variations in porosity can propagate as dispersive non-linear waves with a poorly understood non-linear dispersion term. At smaller scales, laboratory experiments demonstrate that shear deformation of the solid matrix can drive localization of melt-rich bands We will consider a series of analytic and numerical model problems to develop a better understanding of the current models as well as exploring ways to improve the formulation. This project will form the primary source of funding for a promising graduate student (Gideon Simpson) to work at the intersection of Applied Mathematics and Earth Science. This work should also have general applications in science and engineering to problems involving the flow of fluids in permeable deformable solids such as those arising in petroleum engineering, hydrology and nuclear/toxic waste confinement.
研究人员专注于对地幔中部分熔融岩石(岩浆)的动力学行为有更深入的了解。这一问题对大尺度地幔对流动力学、板块构造以及地球地球化学演化具有重要意义。岩浆运移也是耦合流体/固体力学中的一个本质上有趣的问题,因为它需要理解低粘度反应流体在强变形和可渗透基质中的非线性相互作用。在过去的20年里,地幔中岩浆迁移的主要理论一直是一个数学模型系统(偏微分方程或PDE),它描述了宏观量的演变,例如在给定的位置和时间的熔融岩石的孔隙度或比例。这些方程已被证明是有用的探索岩浆系统的行为,通过简化的模型问题和更复杂的地球科学的具体应用。然而,最近的实验工作表明,这些模型的实验和预测之间存在一些重要的定量差异。特别是,这些模型变得奇异的孔隙度变小。这些和其他结果表明,建模和数学理解的行为,目前的方程是必要的,以衡量这些模型的效用,并制定改进的数学描述(例如,通过引入物理上合理的正则化)的部分熔融地区在大尺度地幔动力学。该提案的目的是将非线性偏微分方程分析的专业知识与岩浆动力学的物理学和计算相结合,为复杂的耦合流体/固体系统开发更好的洞察力和更好的模型。这项工作是合作的努力,迈克尔我。温斯坦(哥伦比亚应用数学)和马克Spiegelman(哥伦比亚地球和环境之间的联合任命。科学和应用数学),并将主要博士学位。吉迪恩·辛普森的研究,他由温斯坦和斯皮格曼共同监督。 这个项目将解决两个独立的问题,出现在不同规模的部分熔融地区。在大尺度上,孔隙度的变化可以作为色散非线性波传播,但对非线性色散项的了解很少。在较小的尺度下,实验室实验表明,固体基质的剪切变形可以驱动富熔体带的局部化。我们将考虑一系列的分析和数值模型问题,以更好地理解当前的模型,并探索改进配方的方法。该项目将成为一个有前途的研究生(吉迪恩·辛普森)在应用数学和地球科学的交叉点工作的主要资金来源。这项工作也应该在科学和工程中的一般应用,涉及流体在可渗透变形固体中的流动问题,如石油工程,水文学和核/有毒废物限制中出现的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Weinstein其他文献

共振周波数比動的制御手法を用いた台形波形圧力照射によるキャビテーション気泡生成の高効率化
采用共振频率特定动态控制方法提高梯形波形压力照射空化气泡产生效率
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita;横澤宏紀,森田剛;横澤宏紀,森田剛
  • 通讯作者:
    横澤宏紀,森田剛
共振周波数比の動的制御可能な超音波振動子の設計
谐振频率比动态控制超声换能器设计
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita
  • 通讯作者:
    and Takeshi Morita
Esophagatis and perinatal cytomegalovirus infection.
食管炎和围产期巨细胞病毒感染。
  • DOI:
    10.1097/00006454-200105000-00017
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Weinstein;Elizabeth Lee Ford;Ernest Cutz
  • 通讯作者:
    Ernest Cutz
Selection on growth rates via a trade-off between survival to sexual maturity and longevity in the swordtail fish Xiphophorus multilineatus
  • DOI:
    10.1007/s10682-019-09989-w
  • 发表时间:
    2019-05-08
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Michael Weinstein;Melissa N. Liotta;Aaron Solitt;Adam Hunt;Jessica K. Abbott;Oscar Rios-Cardenas;Molly R. Morris
  • 通讯作者:
    Molly R. Morris
広い周波数帯で共振振動可能な超音波振動子の開発
开发能够在宽频带内共振的超声波换能器
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita
  • 通讯作者:
    and Takeshi Morita

Michael Weinstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Weinstein', 18)}}的其他基金

Waves, Novel Two-Dimensional Materials, and Applications
波、新型二维材料及其应用
  • 批准号:
    1908657
  • 财政年份:
    2019
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Continuing Grant
OP: Collaborative Research: Landau levels and Dirac points in Continuous Photonic Systems
OP:协作研究:连续光子系统中的朗道能级和狄拉克点
  • 批准号:
    1620418
  • 财政年份:
    2016
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Continuing Grant
Modeling Ion Extraction from First Toroidal Electron-Cyclotron-Resonance Ion Source
模拟第一环形电子回旋共振离子源的离子提取
  • 批准号:
    1632802
  • 财政年份:
    2016
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant
Waves in Complex Media and Applications
复杂媒体和应用中的波浪
  • 批准号:
    1412560
  • 财政年份:
    2014
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Continuing Grant
Dynamics of Linear and Nonlinear Waves in Complex Media
复杂介质中线性和非线性波的动力学
  • 批准号:
    1008855
  • 财政年份:
    2010
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Continuing Grant
Wave Propagation and Resonance in Complex Media
复杂介质中的波传播和共振
  • 批准号:
    0707850
  • 财政年份:
    2007
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant
Resonance Problems for Linear and Nonlinear Waves
线性和非线性波的共振问题
  • 批准号:
    0412305
  • 财政年份:
    2004
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Dynamics of Nonlinear Dispersive Systems
数学科学:非线性色散系统动力学
  • 批准号:
    9500997
  • 财政年份:
    1995
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Scattering and Stability of NonlinearWaves
数学科学:非线性波的散射和稳定性
  • 批准号:
    9201717
  • 财政年份:
    1992
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Dispersive Waves
数学科学:非线性色散波
  • 批准号:
    9003257
  • 财政年份:
    1990
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
  • 批准号:
    2311297
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant
Multidimensional analytical and computational approach to determine diastereomer compositions in oligonucleotide drug products
确定寡核苷酸药物产品中非对映异构体组成的多维分析和计算方法
  • 批准号:
    10701023
  • 财政年份:
    2022
  • 资助金额:
    $ 31.66万
  • 项目类别:
Assessing the Physiological and Photochemical Pathways Driving Biogenic Sulfur Cycling Using Novel Analytical and Computational Approaches
使用新颖的分析和计算方法评估驱动生物硫循环的生理和光化学途径
  • 批准号:
    569632-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Multidimensional analytical and computational approach to determine diastereomer compositions in oligonucleotide drug products
确定寡核苷酸药物产品中非对映异构体组成的多维分析和计算方法
  • 批准号:
    10583604
  • 财政年份:
    2022
  • 资助金额:
    $ 31.66万
  • 项目类别:
Analytical and Computational Tools for Long-Pulse Photoacoustics
长脉冲光声学的分析和计算工具
  • 批准号:
    RGPIN-2016-04190
  • 财政年份:
    2021
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Analytical Method on Low-computational-cost Nonlinear Vibrations of a Complex-shaped Thin Walled Plate with Dividing Segments
复杂形状分段薄壁板低计算成本非线性振动分析方法的发展
  • 批准号:
    20K04358
  • 财政年份:
    2020
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhanced MDx: a computational model to optimize pre-analytical pathogen isolation from whole blood
增强型 MDx:优化全血分析前病原体分离的计算模型
  • 批准号:
    10650836
  • 财政年份:
    2020
  • 资助金额:
    $ 31.66万
  • 项目类别:
Analytical and Computational Tools for Long-Pulse Photoacoustics
长脉冲光声学的分析和计算工具
  • 批准号:
    RGPIN-2016-04190
  • 财政年份:
    2020
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Discovery Grants Program - Individual
Enhanced MDx: a computational model to optimize pre-analytical pathogen isolation from whole blood
增强型 MDx:优化全血分析前病原体分离的计算模型
  • 批准号:
    10484641
  • 财政年份:
    2020
  • 资助金额:
    $ 31.66万
  • 项目类别:
Enhanced MDx: a computational model to optimize pre-analytical pathogen isolation from whole blood.
增强型 MDx:一种优化全血分析前病原体分离的计算模型。
  • 批准号:
    9909760
  • 财政年份:
    2020
  • 资助金额:
    $ 31.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了