Waves, Novel Two-Dimensional Materials, and Applications

波、新型二维材料及其应用

基本信息

  • 批准号:
    1908657
  • 负责人:
  • 金额:
    $ 67.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

At the heart of many realized and envisioned advances in science and technology --from communication networks to quantum computation -- is the ability to robustly transport, channel, and manipulate forms of energy, e.g. electronic and optical, on very small spatial and temporal scales. This is achieved by fabricating novel media in which energy, which propagates as waves, interacts with engineered microfeatures. A current example of a novel, naturally occurring, medium of intense interest is graphene a one-atom thick mono-layer of carbon atoms, arranged in-plane in a honeycomb structure, extending to the macro-scale. Graphene is the most conductive substance known at room temperature (electronically and thermally). This material has been at a center of a revolution in Condensed Matter Physics and Materials Science, known as the Two-Dimensional Material. Many of the novel phenomena observed in graphene relate to general mathematical properties of waves in media with novel symmetry, and hence physicists and engineers have engineered and investigated materials with similar general properties, dubbed "artificial graphene," with a view on applications to optics, communications, information storage and computing. PI Weinstein will study a range of problems in fundamental and applied mathematics related to the existence, stability and transport properties of waves in such novel media, with honeycomb structures as a paradigm for 2D materials, as well as questions concerning the dynamics of waves in nonlinear systems. This work is firmly aligned with Quantum Leap, one of the NSF's 10 Big Ideas. This award will support one graduate student to be trained in a multifaceted approach to applied mathematical research using modeling, analysis and computation, with emphasis on applications of wave phenomena in complex media to the scientifically important questions. PI Weinstein will investigate (A) Energy propagation along line-defects in novel 2D periodic media governed by continuum PDE models, topologically protected states and the relation between bulk properties of periodic media and edge effects, and (B) Dynamics of coherent structures in discrete and continuous nonlinear wave systems, in particular (i) transport in nonlinear lattices and (ii) dynamics of a free boundary problem in compressible fluids. (A) Many remarkable properties of 2D materials (e.g. extraordinary conductivity) are related to the subtle properties of its band structure (the collection of dispersion surfaces and eigenmodes of Floquet-Bloch theory) which dictate energy transport. The conical singularities (Dirac points) of the dispersion surfaces of graphene are at the core of its remarkable electron mobility, and the topological properties of its band structure properties give information about the types of energy-transport can occur when graphene is interfaced with free-space or another material. Thus, it is through a convergence notion from Analysis, PDE and Topology that one can make process understanding these novel materials and their artificial analogues. (B) This research is part of the PI's long-standing research program in nonlinear waves, which now emphasizes i) coherent structure propagation in discrete nonlinear dispersive systems and ii) the nonlinear PDE dynamics of coherent structures with infinitely many internal degrees of freedom, as exemplified by the nonlinear oscillations of a bubble in the fluid.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多实现和设想的科学和技术进步的核心-从通信网络到量子计算-是在非常小的空间和时间尺度上稳健地传输,通道和操纵能量形式的能力,例如电子和光学。这是通过制造新型介质来实现的,在这种介质中,作为波传播的能量与工程微特征相互作用。一种新的、天然存在的、引起强烈兴趣的介质的当前示例是石墨烯,一个原子厚的碳原子单层,以蜂窝结构在平面内排列,延伸到宏观尺度。石墨烯是已知在室温下最导电的物质(电子和热)。这种材料一直处于凝聚态物理学和材料科学革命的中心,被称为二维材料。在石墨烯中观察到的许多新现象与具有新对称性的介质中的波的一般数学性质有关,因此物理学家和工程师设计和研究了具有类似一般性质的材料,称为“人造石墨烯”,以期应用于光学,通信,信息存储和计算。PI Weinstein将研究一系列与这种新型介质中波的存在,稳定性和传输特性相关的基础和应用数学问题,以蜂窝结构作为2D材料的范例,以及有关非线性系统中波的动力学问题。这项工作与NSF的10大想法之一的量子飞跃密切相关。该奖项将支持一名研究生接受多方面的应用数学研究方法的培训,包括建模,分析和计算,重点是复杂介质中波动现象在科学上重要问题的应用。PI Weinstein将研究(A)由连续PDE模型控制的新型2D周期性介质中沿着线缺陷的能量传播,拓扑保护状态以及周期性介质的体属性与边缘效应之间的关系,以及(B)离散和连续非线性波系统中相干结构的动力学,特别是(i)非线性晶格中输运和(ii)可压缩流体中自由边界问题的动力学。 (A)二维材料的许多显著性质(例如非凡的导电性)与其能带结构的微妙性质(Floquet-Bloch理论的色散表面和本征模的集合)有关,这些性质决定了能量传输。石墨烯色散表面的圆锥奇点(狄拉克点)是其显着的电子迁移率的核心,其能带结构特性的拓扑特性提供了有关石墨烯与自由空间或其他材料连接时可能发生的能量传输类型的信息。因此,通过分析,PDE和拓扑学的融合概念,人们可以使过程理解这些新材料及其人工类似物。 (B)这项研究是PI在非线性波方面的长期研究计划的一部分,该计划现在强调i)离散非线性色散系统中的相干结构传播和ii)具有无限多内部自由度的相干结构的非线性PDE动力学,该奖项反映了NSF的法定使命,并被认为是值得支持的,使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Weinstein其他文献

共振周波数比動的制御手法を用いた台形波形圧力照射によるキャビテーション気泡生成の高効率化
采用共振频率特定动态控制方法提高梯形波形压力照射空化气泡产生效率
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita;横澤宏紀,森田剛;横澤宏紀,森田剛
  • 通讯作者:
    横澤宏紀,森田剛
共振周波数比の動的制御可能な超音波振動子の設計
谐振频率比动态控制超声换能器设计
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita
  • 通讯作者:
    and Takeshi Morita
Esophagatis and perinatal cytomegalovirus infection.
食管炎和围产期巨细胞病毒感染。
  • DOI:
    10.1097/00006454-200105000-00017
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Weinstein;Elizabeth Lee Ford;Ernest Cutz
  • 通讯作者:
    Ernest Cutz
Selection on growth rates via a trade-off between survival to sexual maturity and longevity in the swordtail fish Xiphophorus multilineatus
  • DOI:
    10.1007/s10682-019-09989-w
  • 发表时间:
    2019-05-08
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Michael Weinstein;Melissa N. Liotta;Aaron Solitt;Adam Hunt;Jessica K. Abbott;Oscar Rios-Cardenas;Molly R. Morris
  • 通讯作者:
    Molly R. Morris
広い周波数帯で共振振動可能な超音波振動子の開発
开发能够在宽频带内共振的超声波换能器
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita
  • 通讯作者:
    and Takeshi Morita

Michael Weinstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Weinstein', 18)}}的其他基金

OP: Collaborative Research: Landau levels and Dirac points in Continuous Photonic Systems
OP:协作研究:连续光子系统中的朗道能级和狄拉克点
  • 批准号:
    1620418
  • 财政年份:
    2016
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Modeling Ion Extraction from First Toroidal Electron-Cyclotron-Resonance Ion Source
模拟第一环形电子回旋共振离子源的离子提取
  • 批准号:
    1632802
  • 财政年份:
    2016
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Waves in Complex Media and Applications
复杂媒体和应用中的波浪
  • 批准号:
    1412560
  • 财政年份:
    2014
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Dynamics of Linear and Nonlinear Waves in Complex Media
复杂介质中线性和非线性波的动力学
  • 批准号:
    1008855
  • 财政年份:
    2010
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Wave Propagation and Resonance in Complex Media
复杂介质中的波传播和共振
  • 批准号:
    0707850
  • 财政年份:
    2007
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
CMG: Analytical and Computational Studies of Magma Dynamics
CMG:岩浆动力学的分析和计算研究
  • 批准号:
    0530853
  • 财政年份:
    2005
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Resonance Problems for Linear and Nonlinear Waves
线性和非线性波的共振问题
  • 批准号:
    0412305
  • 财政年份:
    2004
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Dynamics of Nonlinear Dispersive Systems
数学科学:非线性色散系统动力学
  • 批准号:
    9500997
  • 财政年份:
    1995
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Scattering and Stability of NonlinearWaves
数学科学:非线性波的散射和稳定性
  • 批准号:
    9201717
  • 财政年份:
    1992
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Dispersive Waves
数学科学:非线性色散波
  • 批准号:
    9003257
  • 财政年份:
    1990
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Collaborative R&D
Synthesis and exploration of novel physical properties of two-dimensional layered quasicrystal
二维层状准晶的合成与新物理性质的探索
  • 批准号:
    23K04355
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
  • 批准号:
    22KJ2613
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigation of a novel lean-lean two-stage combustion strategy for the control of NOx from swirl combustors fueled with mixtures of ammonia and hydrogen.
研究一种新型稀薄两级燃烧策略,用于控制以氨和氢气混合物为燃料的旋流燃烧器中的氮氧化物。
  • 批准号:
    23K13263
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ultimate Two-Stage Selection of Nucleic Acid Aptamers as Novel Molecular Recognition Elements
核酸适体作为新型分子识别元件的终极两阶段选择
  • 批准号:
    23K17982
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
SBIR Phase I: Novel Reusable Launch Platform: Two-Body Separation Under Unique Aerodynamic Circumstances
SBIR第一阶段:新型可重复使用发射平台:独特气动环境下的两体分离
  • 批准号:
    2233168
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Two-for-one Stroke Thrombectomy: A novel Dual DAC to enhance navigability, lumen size, aspiration efficiency, and persistent flow arrest in mechanical thrombectomy
二合一中风血栓切除术:一种新型双 DAC,可增强机械血栓切除术中的导航性、管腔尺寸、抽吸效率和持续流动停止
  • 批准号:
    10698538
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
Development of novel photochromic molecules that generate two types of radicals and elucidation of their photophysical properties
开发产生两种自由基的新型光致变色分子并阐明其光物理性质
  • 批准号:
    23KJ1635
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Novel properties of two-dimensional electrons at the unique (111) interface in perovskite oxides
钙钛矿氧化物中独特(111)界面二维电子的新特性
  • 批准号:
    22K14001
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Characterization of ASPH and junctate, two novel gamma-carboxylated proteins
ASPH 和 junctate(两种新型 γ-羧化蛋白)的表征
  • 批准号:
    559392-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了