Dynamics of Linear and Nonlinear Waves in Complex Media
复杂介质中线性和非线性波的动力学
基本信息
- 批准号:1008855
- 负责人:
- 金额:$ 43.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Coherent structures are identifiable localized characteristics in a wave field, which play a central role as carriers of energy, information etc in many physical systems. Several examples are: solitary water waves at the water / air interface, aerodynamic shock waves and optical beams or pulses used in communication networks. This research concerns the study of nonlinear partial differential equations (PDEs) governing wave phenomena, in particular coherent structures, in optics, electromagnetics, hydrodynamics and quantum physics. Coherent structure solutions of PDEs often arise due to a combination of nonlinear and dispersive effects. Nonlinearity tends to concentrate energy and dispersion tends to spread it out; their balance often results in persistent or long-lived coherent structures. We will study the dynamics of coherent structures - their stability and scattering interactions. We shall also consider the interaction of such coherent structures with spatially inhomogeneous media. Inhomogeneities (spatially varying coefficients in the PDEs) introduce another class of localized states called "defect modes". We will study the nonlinear dynamics and energy exchange between coherent structures with defect modes and radiation modes. Finally, we will apply our previous work on energy transfer between discrete (bound state) and continuum (radiation) modes in energy conserving PDEs to the question of control of wave propagation, e.g. designing a photonic structure to maximize the lifetime of a designated optical state. Our mathematical approaches range from rigorous analytical methods to formal asymptotic methods to numerical simulation of PDEs and optimization.Advances in the design and fabrication of micro- and nano-structured media are driving mathematical research to determine their effective properties and those of waves propagating in such structures. Such microstructures are important components in current and future communication and information processing technologies. For example, they enable the manipulation of light (photons) in a manner analogous to the way electricity (electrons) has been manipulated in solid state computer chips for many years. Advantages come through greater speed and virtually dissipation free propagation in photonic media. Due to the size, multi-scale character and complexity of these problems, relying on full computer simulations of the governing partial differential equations is not practical for the problem of device design. The mathematical problems explored in this project are aimed at the development of systematic approaches to characterization of such microstructured media and an understanding the properties of waves traveling through them. These will be used to develop hybrid analytical / computational approaches to the problems requiring the control of coherent structures.
相干结构是波场中可识别的局域特征,在许多物理系统中扮演着能量、信息等载体的核心角色。几个例子是:水/空气界面上的孤立水波、空气动力冲击波和通信网络中使用的光束或脉冲。本研究涉及光学、电磁学、流体力学和量子物理中控制波动现象的非线性偏微分方程组,特别是相干结构的研究。偏微分方程组的相干结构解往往是由于非线性和色散效应的共同作用而产生的。非线性倾向于集中能量,而色散倾向于分散能量;它们的平衡通常导致持久的或长寿命的相干结构。我们将研究相干结构的动力学--它们的稳定性和散射相互作用。我们还将考虑这种相干结构与空间不均匀介质的相互作用。非均匀性(偏微分方程中的空间变化系数)引入了另一类局域态,称为“缺陷模”。我们将研究具有缺陷模和辐射模的相干结构之间的非线性动力学和能量交换。最后,我们将把我们以前关于能量守恒偏微分方程组中离散(束束态)和连续(辐射)模之间的能量传递的工作应用于波传播的控制问题,例如设计一种光子结构来最大化指定光学态的寿命。我们的数学方法从严格的解析方法到形式渐近方法,再到偏微分方程组的数值模拟和优化。微纳结构介质的设计和制造的进步推动了数学研究,以确定它们的有效特性和波在此类结构中的传播特性。这种微结构是当前和未来通信和信息处理技术的重要组成部分。例如,它们能够以类似于多年来在固态计算机芯片中操纵电(电子)的方式来操纵光(光子)。优势来自于在光子介质中更快的速度和几乎无耗散的传播。由于这些问题的规模、多尺度特性和复杂性,对于器件设计问题,依靠控制偏微分方程组的全计算机模拟是不现实的。本项目中探讨的数学问题旨在开发系统的方法来表征这种微结构介质,并了解波在其中传播的特性。这些将被用来开发混合分析/计算方法,以解决需要控制相干结构的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Weinstein其他文献
共振周波数比動的制御手法を用いた台形波形圧力照射によるキャビテーション気泡生成の高効率化
采用共振频率特定动态控制方法提高梯形波形压力照射空化气泡产生效率
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita;横澤宏紀,森田剛;横澤宏紀,森田剛 - 通讯作者:
横澤宏紀,森田剛
共振周波数比の動的制御可能な超音波振動子の設計
谐振频率比动态控制超声换能器设计
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita - 通讯作者:
and Takeshi Morita
Esophagatis and perinatal cytomegalovirus infection.
食管炎和围产期巨细胞病毒感染。
- DOI:
10.1097/00006454-200105000-00017 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Michael Weinstein;Elizabeth Lee Ford;Ernest Cutz - 通讯作者:
Ernest Cutz
Selection on growth rates via a trade-off between survival to sexual maturity and longevity in the swordtail fish Xiphophorus multilineatus
- DOI:
10.1007/s10682-019-09989-w - 发表时间:
2019-05-08 - 期刊:
- 影响因子:2.100
- 作者:
Michael Weinstein;Melissa N. Liotta;Aaron Solitt;Adam Hunt;Jessica K. Abbott;Oscar Rios-Cardenas;Molly R. Morris - 通讯作者:
Molly R. Morris
広い周波数帯で共振振動可能な超音波振動子の開発
开发能够在宽频带内共振的超声波换能器
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita - 通讯作者:
and Takeshi Morita
Michael Weinstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Weinstein', 18)}}的其他基金
Waves, Novel Two-Dimensional Materials, and Applications
波、新型二维材料及其应用
- 批准号:
1908657 - 财政年份:2019
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
OP: Collaborative Research: Landau levels and Dirac points in Continuous Photonic Systems
OP:协作研究:连续光子系统中的朗道能级和狄拉克点
- 批准号:
1620418 - 财政年份:2016
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
Modeling Ion Extraction from First Toroidal Electron-Cyclotron-Resonance Ion Source
模拟第一环形电子回旋共振离子源的离子提取
- 批准号:
1632802 - 财政年份:2016
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
Waves in Complex Media and Applications
复杂媒体和应用中的波浪
- 批准号:
1412560 - 财政年份:2014
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
Wave Propagation and Resonance in Complex Media
复杂介质中的波传播和共振
- 批准号:
0707850 - 财政年份:2007
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
CMG: Analytical and Computational Studies of Magma Dynamics
CMG:岩浆动力学的分析和计算研究
- 批准号:
0530853 - 财政年份:2005
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
Resonance Problems for Linear and Nonlinear Waves
线性和非线性波的共振问题
- 批准号:
0412305 - 财政年份:2004
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamics of Nonlinear Dispersive Systems
数学科学:非线性色散系统动力学
- 批准号:
9500997 - 财政年份:1995
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Scattering and Stability of NonlinearWaves
数学科学:非线性波的散射和稳定性
- 批准号:
9201717 - 财政年份:1992
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Dispersive Waves
数学科学:非线性色散波
- 批准号:
9003257 - 财政年份:1990
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
- 批准号:
2338704 - 财政年份:2024
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
Control of linear and nonlinear physical properties based on rational design
基于合理设计的线性和非线性物理特性的控制
- 批准号:
23K04688 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New nonlinear control based on specific state transitions---to represent nonlinear systems by switching linear systems
基于特定状态转移的新型非线性控制——通过切换线性系统来表示非线性系统
- 批准号:
23K03911 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Linear and Nonlinear Tides in Coalescing Binary Neutron Stars
聚结双中子星中的线性和非线性潮汐
- 批准号:
2308415 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
One-Way Navier-Stokes (OWNS) Approach for Linear and Nonlinear Instability and Transition in High-Speed Boundary Layers
用于解决高速边界层中线性和非线性不稳定性及转变的单向纳维斯托克斯 (OWNS) 方法
- 批准号:
532522-2019 - 财政年份:2022
- 资助金额:
$ 43.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
Linear and nonlinear reduced models for the numerical approximation of high-dimensional functions
高维函数数值逼近的线性和非线性简化模型
- 批准号:
RGPIN-2021-04311 - 财政年份:2022
- 资助金额:
$ 43.5万 - 项目类别:
Discovery Grants Program - Individual
Linear and nonlinear exciton dynamics with time-dependent density-functional theory
具有瞬态密度泛函理论的线性和非线性激子动力学
- 批准号:
2149082 - 财政年份:2022
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
Linear and nonlinear modeling of fundamental theory explaining the prescription system of Kampo (traditional Japanese medicine) formulas based on chemistry and data science
基于化学和数据科学的解释汉方(传统日本医学)处方系统的基础理论的线性和非线性建模
- 批准号:
22K06690 - 财政年份:2022
- 资助金额:
$ 43.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Linear and Nonlinear Nanophotonics: Simulation, Deep Learning and Inverse Design
线性和非线性纳米光子学:仿真、深度学习和逆向设计
- 批准号:
555670-2020 - 财政年份:2022
- 资助金额:
$ 43.5万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Linear and nonlinear reduced models for the numerical approximation of high-dimensional functions
高维函数数值逼近的线性和非线性简化模型
- 批准号:
DGECR-2021-00402 - 财政年份:2021
- 资助金额:
$ 43.5万 - 项目类别:
Discovery Launch Supplement