Resonance Problems for Linear and Nonlinear Waves

线性和非线性波的共振问题

基本信息

  • 批准号:
    0412305
  • 负责人:
  • 金额:
    $ 31.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

DMS-0412305 Title: Resonance Problems for Linear and Nonlinear WavesPI: Michael I. Weinstein Department of Applied Physics and Applied Mathematics Columbia University New York, New York Abstract:The Principal Investigator will study problems involving resonant energy transfer in Hamiltonian wave equations governing propagation in nonlinear and inhomogeneous, deterministic and random media. The proposed research will deepen our understanding of and inform analytical and computational approaches to the study of important wave phenomena in physical systems. Three theme areas are considered. (1) Nonlinear scattering and resonant energy transfer: This concerns fundamental questions for infinite dimensional dynamical systems on the interaction of bound states (solitary waves, kinks, vortices) and radiation. (2) Control of soliton-like coherent structures: Motivated by the problem of trapping optical pulses in inhomogeneous media with defects, this work concerns design of propagation media in order to achieve **controlled** energy transfer. The ideas are also of direct relevance in the study of mathematical models of Bose-Einstein condensation. (3) Linear and nonlinear photonic structures and homogenization: This work addresses determination of properties of photonic microstructures, by effective media (e.g. higher order homogenization) approaches with applications to efficient numerical study of optical microstructures and their optimal design. Technological advances have made possible the fabrication of novel optical media (photonic microstructures), which have great potential for applications ranging from transmission media and devices in communication networks to the fundamental science of optical and quantum computing.These media are material structures made up of features which are of micro- (millionth of a meter) or nano- (billionth of a meter) scales. The shape of individual microfeatures, their spatial arrangement and the material contrasts among them (e.g. refractive index variations) offer multiple degrees of freedom, which can now be tuned in order to influence light pulses sent through such media. Devices based on these novel structures can be used to shape, filter and amplify light pulses which encode the bits of information in optical communication networks. Transmission media using such structures can potentially achieve much lower losses and lower distortion of pulses than in currently used optical fiber. The number of possible designs is so huge that an approach mainly based on direct computer exploration is notfeasible. Rather, a fundamental mathematical understanding of such phenomena must be joined with computation to achieve rational and systematic design of optical media. The goal of this research is to develop fundamental mathematical insights in the fields of partial differential equations and dynamical systems and to apply them to an understanding of light propagation (linear and nonlinear) in photonic microstructures.
DMS-0412305标题:线性和非线性波的共振问题PI:Michael I.温斯坦 应用物理系 与应用数学 哥伦比亚大学 纽约,纽约摘要:主要研究员将研究涉及共振能量转移的问题,在非线性和非均匀,确定性和随机介质中传播的哈密顿波动方程。拟议的研究将加深我们对物理系统中重要波动现象研究的理解,并为分析和计算方法提供信息。审议了三个主题领域。(1)非线性散射和共振能量转移:这涉及无限维动力学系统的基本问题,即束缚态(孤立波,扭结,涡旋)和辐射的相互作用。(2)类孤子相干结构的控制:受缺陷非均匀介质中捕获光脉冲问题的启发,本工作涉及传播介质的设计,以实现能量传输的受控。这些想法在玻色-爱因斯坦凝聚的数学模型的研究中也有直接的相关性。(3)线性和非线性光子结构和均匀化:这项工作解决了确定光子微结构的属性,通过有效的介质(例如高阶均匀化)方法,应用于光学微结构及其优化设计的有效数值研究。随着科学技术的发展,新型光学介质(光子微结构)的制备成为可能。光子微结构是由微米(百万分之一米)或纳米(十亿分之一米)尺度的特征组成的材料结构,在从通信网络的传输介质和器件到光学和量子计算的基础科学等方面具有巨大的应用潜力。单个微特征的形状、它们的空间布置和它们之间的材料对比(例如折射率变化)提供了多个自由度,现在可以对其进行调谐以影响通过这种介质发送的光脉冲。基于这些新结构的器件可用于整形、滤波和放大光脉冲,这些光脉冲在光通信网络中对信息比特进行编码。使用这种结构的传输介质可以潜在地实现比当前使用的光纤低得多的损耗和更低的脉冲失真。可能的设计数量是如此巨大,以至于主要基于直接计算机探索的方法是不可行的。相反,对这种现象的基本数学理解必须与计算相结合,以实现光学介质的合理和系统设计。 本研究的目标是在偏微分方程和动力系统领域发展基本的数学见解,并将其应用于光子微结构中光传播(线性和非线性)的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Weinstein其他文献

共振周波数比動的制御手法を用いた台形波形圧力照射によるキャビテーション気泡生成の高効率化
采用共振频率特定动态控制方法提高梯形波形压力照射空化气泡产生效率
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita;横澤宏紀,森田剛;横澤宏紀,森田剛
  • 通讯作者:
    横澤宏紀,森田剛
共振周波数比の動的制御可能な超音波振動子の設計
谐振频率比动态控制超声换能器设计
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita
  • 通讯作者:
    and Takeshi Morita
Esophagatis and perinatal cytomegalovirus infection.
食管炎和围产期巨细胞病毒感染。
  • DOI:
    10.1097/00006454-200105000-00017
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Weinstein;Elizabeth Lee Ford;Ernest Cutz
  • 通讯作者:
    Ernest Cutz
Selection on growth rates via a trade-off between survival to sexual maturity and longevity in the swordtail fish Xiphophorus multilineatus
  • DOI:
    10.1007/s10682-019-09989-w
  • 发表时间:
    2019-05-08
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Michael Weinstein;Melissa N. Liotta;Aaron Solitt;Adam Hunt;Jessica K. Abbott;Oscar Rios-Cardenas;Molly R. Morris
  • 通讯作者:
    Molly R. Morris
広い周波数帯で共振振動可能な超音波振動子の開発
开发能够在宽频带内共振的超声波换能器
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita
  • 通讯作者:
    and Takeshi Morita

Michael Weinstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Weinstein', 18)}}的其他基金

Waves, Novel Two-Dimensional Materials, and Applications
波、新型二维材料及其应用
  • 批准号:
    1908657
  • 财政年份:
    2019
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Continuing Grant
OP: Collaborative Research: Landau levels and Dirac points in Continuous Photonic Systems
OP:协作研究:连续光子系统中的朗道能级和狄拉克点
  • 批准号:
    1620418
  • 财政年份:
    2016
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Continuing Grant
Modeling Ion Extraction from First Toroidal Electron-Cyclotron-Resonance Ion Source
模拟第一环形电子回旋共振离子源的离子提取
  • 批准号:
    1632802
  • 财政年份:
    2016
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Standard Grant
Waves in Complex Media and Applications
复杂媒体和应用中的波浪
  • 批准号:
    1412560
  • 财政年份:
    2014
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Continuing Grant
Dynamics of Linear and Nonlinear Waves in Complex Media
复杂介质中线性和非线性波的动力学
  • 批准号:
    1008855
  • 财政年份:
    2010
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Continuing Grant
Wave Propagation and Resonance in Complex Media
复杂介质中的波传播和共振
  • 批准号:
    0707850
  • 财政年份:
    2007
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Standard Grant
CMG: Analytical and Computational Studies of Magma Dynamics
CMG:岩浆动力学的分析和计算研究
  • 批准号:
    0530853
  • 财政年份:
    2005
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Dynamics of Nonlinear Dispersive Systems
数学科学:非线性色散系统动力学
  • 批准号:
    9500997
  • 财政年份:
    1995
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Scattering and Stability of NonlinearWaves
数学科学:非线性波的散射和稳定性
  • 批准号:
    9201717
  • 财政年份:
    1992
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Dispersive Waves
数学科学:非线性色散波
  • 批准号:
    9003257
  • 财政年份:
    1990
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Standard Grant

相似海外基金

Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
  • 批准号:
    EP/Y030249/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Research Grant
Smooth Solutions to Linear Inequalities, Constrained Sobolev interpolation, and Trace Problems on Domains
线性不等式的平滑解、约束 Sobolev 插值和域上的追踪问题
  • 批准号:
    2247429
  • 财政年份:
    2023
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Standard Grant
Mixed Precision Arithmetic for Large Scale Linear Inverse Problems
大规模线性反问题的混合精度算法
  • 批准号:
    2208294
  • 财政年份:
    2022
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Standard Grant
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
  • 批准号:
    RGPIN-2017-04491
  • 财政年份:
    2021
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Discovery Grants Program - Individual
Reduced Computations for Large-Scale Optimization Problems with Linear Structures
减少线性结构大规模优化问题的计算量
  • 批准号:
    563385-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 31.67万
  • 项目类别:
    University Undergraduate Student Research Awards
LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement
LEAPS-MPS:磁等离子体约束中非线性积分微分边值问题的混合不连续伽辽金方法
  • 批准号:
    2137305
  • 财政年份:
    2021
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Standard Grant
Parameter-Free Optimization Algorithms for Underdetermined Linear Inverse Problems
欠定线性反问题的无参数优化算法
  • 批准号:
    20K23324
  • 财政年份:
    2020
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
  • 批准号:
    RGPIN-2017-04491
  • 财政年份:
    2020
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Discovery Grants Program - Individual
New develpment of spectral and inverse scattering theory-Non linear problems and continuum limit
光谱与逆散射理论的新进展-非线性问题与连续极限
  • 批准号:
    20K03667
  • 财政年份:
    2020
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
  • 批准号:
    RGPIN-2017-04491
  • 财政年份:
    2019
  • 资助金额:
    $ 31.67万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了