Wave Propagation and Resonance in Complex Media
复杂介质中的波传播和共振
基本信息
- 批准号:0707850
- 负责人:
- 金额:$ 36.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-15 至 2014-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns partial differential equations governing wave propagation in linear and nonlinear inhomogeneous media. The problems considered range from (a) fundamental analytical ones in wave propagation theory (nonlinear scattering theory, calculation of scattering resonances, and optimization of microstructures with respect to the lifetime of certain states) to (b) applications to optics (linear and nonlinear) and macroscopic quantum systems (Bose-Einstein condensation). The different research directions are unified by the themes of (i) energy transfer among different modes (e.g., coherent localized structures, such as solitons, vortices, and radiation modes) and (ii) control of coherent structures that are weakly coupled to an environment.Interactions of waves (light, acoustic, fluid, electronic, gravitational, etc.) with inhomogeneities are ubiquitous in nature as well as in engineered systems. These interactions are governed by equations of physics, which, in the fundamental forms that incorporate all relevant physical effects, are intractable: In most interesting cases they cannot be solved, even with today's most powerful computers. Methods involving simplified mathematical models, mathematical analysis, and scientific computation working in tandem are essential to progress on the most important problems. This research is aimed at the development of such hybrid approaches to classes of wave interaction problems, with potential applications to, for example, design of optical devices and quantum information science.
本计画系关于线性与非线性非均匀介质中波动之偏微分方程式。 考虑的问题范围从(a)波传播理论中的基本分析问题(非线性散射理论,散射共振的计算,以及相对于某些状态的寿命的微观结构的优化)到(B)光学(线性和非线性)和宏观量子系统(玻色-爱因斯坦凝聚)的应用。 不同的研究方向由以下主题统一:(i)不同模式之间的能量传递(例如,相干局域结构,如孤子、涡旋和辐射模式)和(ii)弱耦合到环境的相干结构的控制。波(光、声、流体、电子、引力等)的相互作用不均匀性在自然界和工程系统中普遍存在。 这些相互作用由物理方程控制,这些物理方程的基本形式包含了所有相关的物理效应,是难以解决的:在大多数有趣的情况下,即使使用当今最强大的计算机,它们也无法解决。 涉及简化数学模型、数学分析和科学计算的方法是解决最重要问题的关键。 本研究的目的是发展这种混合方法的类波相互作用的问题,具有潜在的应用,例如,光学器件和量子信息科学的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Weinstein其他文献
共振周波数比動的制御手法を用いた台形波形圧力照射によるキャビテーション気泡生成の高効率化
采用共振频率特定动态控制方法提高梯形波形压力照射空化气泡产生效率
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita;横澤宏紀,森田剛;横澤宏紀,森田剛 - 通讯作者:
横澤宏紀,森田剛
共振周波数比の動的制御可能な超音波振動子の設計
谐振频率比动态控制超声换能器设计
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita - 通讯作者:
and Takeshi Morita
Esophagatis and perinatal cytomegalovirus infection.
食管炎和围产期巨细胞病毒感染。
- DOI:
10.1097/00006454-200105000-00017 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Michael Weinstein;Elizabeth Lee Ford;Ernest Cutz - 通讯作者:
Ernest Cutz
Selection on growth rates via a trade-off between survival to sexual maturity and longevity in the swordtail fish Xiphophorus multilineatus
- DOI:
10.1007/s10682-019-09989-w - 发表时间:
2019-05-08 - 期刊:
- 影响因子:2.100
- 作者:
Michael Weinstein;Melissa N. Liotta;Aaron Solitt;Adam Hunt;Jessica K. Abbott;Oscar Rios-Cardenas;Molly R. Morris - 通讯作者:
Molly R. Morris
広い周波数帯で共振振動可能な超音波振動子の開発
开发能够在宽频带内共振的超声波换能器
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hiroki Yokozawa;Jens Twiefel;Michael Weinstein;and Takeshi Morita - 通讯作者:
and Takeshi Morita
Michael Weinstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Weinstein', 18)}}的其他基金
Waves, Novel Two-Dimensional Materials, and Applications
波、新型二维材料及其应用
- 批准号:
1908657 - 财政年份:2019
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
OP: Collaborative Research: Landau levels and Dirac points in Continuous Photonic Systems
OP:协作研究:连续光子系统中的朗道能级和狄拉克点
- 批准号:
1620418 - 财政年份:2016
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
Modeling Ion Extraction from First Toroidal Electron-Cyclotron-Resonance Ion Source
模拟第一环形电子回旋共振离子源的离子提取
- 批准号:
1632802 - 财政年份:2016
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Waves in Complex Media and Applications
复杂媒体和应用中的波浪
- 批准号:
1412560 - 财政年份:2014
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
Dynamics of Linear and Nonlinear Waves in Complex Media
复杂介质中线性和非线性波的动力学
- 批准号:
1008855 - 财政年份:2010
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
CMG: Analytical and Computational Studies of Magma Dynamics
CMG:岩浆动力学的分析和计算研究
- 批准号:
0530853 - 财政年份:2005
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Resonance Problems for Linear and Nonlinear Waves
线性和非线性波的共振问题
- 批准号:
0412305 - 财政年份:2004
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamics of Nonlinear Dispersive Systems
数学科学:非线性色散系统动力学
- 批准号:
9500997 - 财政年份:1995
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Scattering and Stability of NonlinearWaves
数学科学:非线性波的散射和稳定性
- 批准号:
9201717 - 财政年份:1992
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Dispersive Waves
数学科学:非线性色散波
- 批准号:
9003257 - 财政年份:1990
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
相似海外基金
Mechanisms for the propagation of R-loop induced chromosomal fragments in the germline
R环诱导染色体片段在种系中的繁殖机制
- 批准号:
2341479 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247396 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342937 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
CAREER: Information Propagation over Networks
职业:网络信息传播
- 批准号:
2337808 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247398 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Understanding Dike Propagation Through Comparison of High-fidelity Coupled Fracture and Fluid Flow Models and Field Observations
通过比较高保真耦合裂缝和流体流动模型以及现场观测来了解堤坝的扩展
- 批准号:
2333837 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
Elastic Properties of Confined Fluids and their Role for Wave Propagation in Nanoporous Media
受限流体的弹性特性及其对纳米多孔介质中波传播的作用
- 批准号:
2344923 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247395 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant