Workshop on Mathematical Hydrodynamics at the Steklov Institute; Moscow, Russia; June 12-17, 2006

斯特克洛夫研究所数学流体动力学研讨会;

基本信息

  • 批准号:
    0543432
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-01 至 2006-07-31
  • 项目状态:
    已结题

项目摘要

Abstract DMS 0543432 C E Wayne, Boston UniversityWorkshop on Mathematical Hydrodynamics at the Steklov Institute This is a proposal for support for US-based researchers to attend the Workshop on Mathe-matical Hydrodynamics at the Steklov Institute that is being planned for the week of June12 - 17, 2006.Intellectual merit of the proposed activity: The subject matter of the workshop ismathematical aspects of the theory of hydrodynamics, which includes the study of Euler'sequations and the Navier - Stokes equations of fluid dynamics, as well as the equations forthe dynamics of waves on free surfaces. In the past several years, there has been progress ona number of the most basic and difficult questions in this field. These advances further themathematical understanding of the fundamental, nonlinear, partial differential equationsthat describe these systems and also shed light on the basic physical processes they model.Broader impact of the proposed activity: The purpose of this meeting is to presentthe state of the art to the diverse international community of researchers who have aninterest in these topics, and to discuss the perspectives for the next advances in the field.This should aid in the dissemination of the current state of the knowledge in this area andalso highlight avenues ripe for further progress. Furthermore, the funds from this grantwill allow both junior and underfunded US researchers to participate in the event whomight not otherwise have the opportunity to do so.
摘要DMS 0543432 C E韦恩,波士顿大学斯捷克洛夫研究所数学流体力学研讨会这是一项支持美国研究人员参加斯捷克洛夫研究所数学流体力学研讨会的建议,该研讨会计划于2006年6月12日至17日举行。拟议活动的智力价值:研讨会的主题是流体动力学理论的数学方面,其中包括研究欧拉方程和流体动力学的Navier-Stokes方程,以及自由表面上的波浪动力学方程。在过去几年中,在这一领域的一些最基本和最困难的问题上取得了进展。这些进展进一步加深了对描述这些系统的基本非线性偏微分方程的数学理解,并阐明了它们所模拟的基本物理过程。本次会议的目的是向对这些主题感兴趣的国际研究人员介绍最新技术,并讨论该领域未来发展的前景。这将有助于传播该领域的知识现状,并突出进一步发展的成熟途径。此外,来自该基金的资金允许初级和资金不足的美国研究人员参加这项活动,否则他们可能没有机会这样做。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clarence Wayne其他文献

Clarence Wayne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clarence Wayne', 18)}}的其他基金

Dynamical Systems Methods for Fluid Mechanics and Hamiltonian Mechanics
流体力学和哈密顿力学的动力系统方法
  • 批准号:
    1813384
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dynamical Systems Methods for Partial Differential Equations
偏微分方程的动力系统方法
  • 批准号:
    1311553
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Infinite Dimensional Dynamical Systems and Partial Differential Equations
无限维动力系统和偏微分方程
  • 批准号:
    0908093
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Special meeting: Dynamical systems and evolution equations, CRM
特别会议:动力系统和演化方程,CRM
  • 批准号:
    0803140
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dynamical Systems Approaches to Partial Differential Equations
偏微分方程的动力系统方法
  • 批准号:
    0103915
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学物理中具有无限多个自由度的动力系统
  • 批准号:
    9896208
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学物理中具有无限多个自由度的动力系统
  • 批准号:
    9501226
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学科学:数学物理中具有无限多个自由度的动力系统
  • 批准号:
    9203359
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学科学:数学物理中具有无限多个自由度的动力系统
  • 批准号:
    9002059
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Ordered and Chaotic Motions in Hamiltonian Systems
数学科学:哈密顿系统中的有序运动和混沌运动
  • 批准号:
    8802118
  • 财政年份:
    1988
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Studies on mathematical structure of boundary value problems appearing in hydrodynamics and magnetohydrodynamics
流体力学和磁流体动力学边值问题的数学结构研究
  • 批准号:
    15K04957
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical and numerical study of nonlinear partial differential equations arising in hydrodynamics
流体动力学中非线性偏微分方程的数学和数值研究
  • 批准号:
    46179-1993
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Sciences: Interacting Particle Systems and Hydrodynamics
数学科学:相互作用的粒子系统和流体动力学
  • 批准号:
    9424270
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical and numerical study of nonlinear partial differential equations arising in hydrodynamics
流体动力学中非线性偏微分方程的数学和数值研究
  • 批准号:
    46179-1993
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and numerical study of nonlinear partial differential equations arising in hydrodynamics
流体动力学中非线性偏微分方程的数学和数值研究
  • 批准号:
    46179-1993
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Problems in General Relativity and Relativistic Hydrodynamics
广义相对论和相对论流体动力学中的数学问题
  • 批准号:
    9307184
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Hydrodynamics and Magnetohydrodynamics
数学科学:流体动力学和磁流体动力学
  • 批准号:
    9307644
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Infinite Particle Systems and Hydrodynamics
数学科学:无限粒子系统和流体动力学
  • 批准号:
    9208490
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical and numerical study of nonlinear partial differential equations arising in hydrodynamics
流体动力学中非线性偏微分方程的数学和数值研究
  • 批准号:
    46179-1990
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Sciences: Topics in Hydrodynamics and Magnetohydrodynamics
数学科学:流体动力学和磁流体动力学主题
  • 批准号:
    9123946
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了