Special meeting: Dynamical systems and evolution equations, CRM

特别会议:动力系统和演化方程,CRM

基本信息

  • 批准号:
    0803140
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-04-15 至 2009-03-31
  • 项目状态:
    已结题

项目摘要

The focus of the thematic program semester of winter 2008 at the CRM is on dynamical systems, interpreted in a broad sense so as to include applications to fundamental problems in differential geometry as well as in mathematical physics. Topics that are considered include:(1) the interplay between dynamical systems and PDE, in particular in the context of Hamiltonian systems,(2) geometric evolution equations such as Ricci flows and extrinsic curvature flows, (3) spectral theory and its relationship to Hamiltonian dynamics, and(4) Floer theory and Hamiltonian flows. In the past several years there have been dramatic achievements in these four areas, representing progress on a number of the most basic and difficult questions in this field. These advances have had a broad impact on recent progress in geometry and topology, and they also shed light on basic physical processes, such as nonlinear wave phenomena, that are modeled by ordinary and partial differential equations.The purpose of this program semester is to bring together members of the diverse international community of researchers who have an interest in these topics, to give a series of advanced-level courses on relevant subject matter so as to make the topic accessible to new researchers in the field, and to bring into discuss the perspectives and general indications for the next advances and directions of progress in the area.The central focus of the theme semester of winter 2008 at CRM is dynamical systems. The theory of dynamical systems is concerned with the description of the evolution of systems depending on time. Such systems are fundamental, and appear very commonly in the modeling of physical, chemical and biological phenomena, as well as in geometry and many other areas of mathematics. In the past several years there have been dramatic achievements in the area of dynamical systems, including the proof of Poincaré conjecture by G. Perelman (an event known to the public through the drama of the Fields medal awards in 2006). These advances have had a broad impact on recent progress in geometry and topology. The modern theory of dynamical systems has also been fundamental in the study of many basic physical processes, and their modeling by ordinary and partial differential equations. The purpose of this program semester is to bring together representatives of the diverse international community of researchers who have an interest in these topics. Its activities will comprise (1) a series of advanced-level courses on the subject matter, so as to make the field available to students and new researchers, (2) to host discussions of the perspectives and future directions for the next advances and areas of progress in the field.
2008年冬季在CRM的专题课程学期的重点是动力系统,在广义上解释,以便包括应用微分几何以及数学物理中的基本问题。考虑的主题包括:(1)动力系统和偏微分方程之间的相互作用,特别是在哈密顿系统的背景下,(2)几何演化方程,如里奇流和外在曲率流,(3)谱理论及其与哈密顿动力学的关系,以及(4)弗洛尔理论和哈密顿流。 在过去几年中,在这四个领域取得了巨大成就,表明在这一领域的一些最基本和最困难的问题上取得了进展。这些进展对几何和拓扑学的最新进展产生了广泛的影响,它们还揭示了基本物理过程,例如用普通和偏微分方程建模的非线性波现象。本项目学期的目的是汇集对这些主题感兴趣的多元化国际研究人员社区的成员,就相关主题开设一系列高级课程,使该领域的新研究人员能够了解这一主题,并讨论该领域未来进展和进展方向的前景和一般指示。2008年冬季主题学期的中心焦点,CRM是一个动态系统。动力系统理论关注的是描述系统随时间的演化。这样的系统是基本的,并且在物理、化学和生物现象的建模以及几何和许多其他数学领域中非常常见。在过去的几年中,动力系统领域取得了令人瞩目的成就,其中包括G。佩雷尔曼(Perelman)事件(通过2006年菲尔兹奖的戏剧性事件而为公众所知)。这些进展对几何和拓扑学的最新进展产生了广泛的影响。 动力系统的现代理论也是许多基本物理过程研究的基础,以及它们由常微分方程和偏微分方程建模的基础。本计划学期的目的是汇集谁在这些主题感兴趣的研究人员的不同国际社会的代表。它的活动将包括:(1)一系列关于该主题的高级课程,以便向学生和新的研究人员提供该领域;(2)主持关于该领域未来进展和进展领域的前景和未来方向的讨论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clarence Wayne其他文献

Clarence Wayne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clarence Wayne', 18)}}的其他基金

Dynamical Systems Methods for Fluid Mechanics and Hamiltonian Mechanics
流体力学和哈密顿力学的动力系统方法
  • 批准号:
    1813384
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dynamical Systems Methods for Partial Differential Equations
偏微分方程的动力系统方法
  • 批准号:
    1311553
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Infinite Dimensional Dynamical Systems and Partial Differential Equations
无限维动力系统和偏微分方程
  • 批准号:
    0908093
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Workshop on Mathematical Hydrodynamics at the Steklov Institute; Moscow, Russia; June 12-17, 2006
斯特克洛夫研究所数学流体动力学研讨会;
  • 批准号:
    0543432
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dynamical Systems Approaches to Partial Differential Equations
偏微分方程的动力系统方法
  • 批准号:
    0103915
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学物理中具有无限多个自由度的动力系统
  • 批准号:
    9896208
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学物理中具有无限多个自由度的动力系统
  • 批准号:
    9501226
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学科学:数学物理中具有无限多个自由度的动力系统
  • 批准号:
    9203359
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学科学:数学物理中具有无限多个自由度的动力系统
  • 批准号:
    9002059
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Ordered and Chaotic Motions in Hamiltonian Systems
数学科学:哈密顿系统中的有序运动和混沌运动
  • 批准号:
    8802118
  • 财政年份:
    1988
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: Polymeric Materials: Science and Engineering Division Centennial Celebration at the Spring 2024 American Chemical Society Meeting
会议:高分子材料:美国化学会 2024 年春季会议科学与工程部百年庆典
  • 批准号:
    2415569
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Participant Support for the Kahramanmaraş, Turkey, Earthquake Sequence One-year Anniversary Programming at the 2024 EERI Annual Meeting; Seattle, Washington; 9-12 April 2024
在 2024 年 EERI 年会上为土耳其卡赫拉曼马拉地震一周年纪念活动提供支持;
  • 批准号:
    2418579
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Transforming Trajectories for Women of Color in Tech: A Meeting Series to Develop a Systemic Action Plan
会议:改变有色人种女性在科技领域的轨迹:制定系统行动计划的会议系列
  • 批准号:
    2333305
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Travel Support: A Short Course on The Polymer Physics of Additive Manufacturing; 2024 American Physical Society (APS) Meeting; Minneapolis, Minnesota; 2-3 March 2024
差旅支持:增材制造聚合物物理短期课程;
  • 批准号:
    2403712
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Meeting Support for the 9th Global Energy and Water Exchanges Open Science Conference in 2024
会议:会议支持2024年第九届全球能源与水交流开放科学大会
  • 批准号:
    2409447
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Travel: NSF Student Travel Grant for 2024 Academy of Management Annual Meeting (AOM)
旅行:2024 年管理学院年会 (AOM) 的 NSF 学生旅行补助金
  • 批准号:
    2420866
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Travel Grant: Enabling Faculty at Under-Resourced Primarily Undergraduate Institutions to Attend the 2024 Fall American Geophysical Union (AGU) Annual Meeting
旅费补助:使资源匮乏的本科院校教师能够参加 2024 年秋季美国地球物理联盟 (AGU) 年会
  • 批准号:
    2422805
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Meeting of Rivers: Exploring the Rights of Nature in the UK
河流交汇:探索英国的自然权利
  • 批准号:
    AH/Z505766/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Conference: A Meeting on Poisson Geometry
会议:泊松几何会议
  • 批准号:
    2410632
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: SaTC: NSF Secure & Trustworthy Cyberspace 2024 PI Meeting Logistics Management
会议:SaTC:NSF 安全
  • 批准号:
    2420955
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了